
Real-time on-the-fly Motion planning via updating tree data of
RRT* using Neural network inference

Junlin Lou∗, Burak Yuksek†, Gokhan Inalhan‡, Antonios Tsourdos§

School of Aerospace, Transport and Manufacturing, Cranfield University, United Kingdom, MK43 0AL

In this study, we consider the problem of motion planning for urban air mobility applications
to generate minimal snap trajectory and trajectory that cost minimal time to reach goal
location in the presence of dynamic geo-fences and uncertainties in the urban airspace. We
have developed two separate approaches for this problem because designing an algorithm
individually for each objective yields better performance. The first approach We proposed
is a decoupled method that includes designing a policy network based on recurrent neural
network for the reinforcement learning algorithm, and then combine an online trajectory
generation algorithm to obtain the minimal snap trajectory for the vehicle. Additionally, in the
second approach, we propose a coupled method using generative adversarial imitation learning
algorithm for training recurrent neural network based policy network and generating time
optimized trajectory. Simulation results show that our approaches have short computation time
when compared to other algorithms with similar performance while guaranteeing sufficient
exploration of the environment. In urban air mobility operations, our approaches are able
to provide real-time on-the-fly motion re-planning for vehicles and re-planned trajectories
maintain continuity for executed trajectory. To the best of our knowledge, we propose one of the
first approaches enabling to perform on-the-fly update of final landing position, and to optimize
path and trajectory in real-time while keeping explorations in the environment.

I. Introduction

Urban Air Mobility (UAM) is an air transport system concept operated in urban airspace, which has been proposed
in recent years and has received extensive attention in the aerospace and transportation industries. The objective of

UAM is to transport people and cargo more effectively by utilising specific vehicles such as electric vertical take-off and
landing (eVTOL) aircraft and small unmanned air vehicle (sUAV). These vehicles are highly automated to navigate
from takeoff phase to landing phase without a human operator aboard. However, such a transportation model is subject
to numerous complicated issues in terms of environment, urban design factors, even factors of UAM platform itself
including buildings [1], high density of flying vehicles [2], micro-weather patterns [3] [4], activities or sudden disasters
in cities [1], and communication, navigation and surveillance quality and availability of the service [5][6]. These factors
lead to static, dynamic, and uncertain flight-restricted areas, obstacles, and geofences[7] in urban airspace, which cause
three main challenging issues for highly-automated aerial vehicles on their safety. Firstly, UAM vehicles need to perform
real-time on-the-fly re-planning due to uncertainties in environment. Secondly, kinematics and dynamics of the system
are nonlinear and subject to constraints on the aerial vehicle in accordance with the aerodynamic characteristics and
power configuration, which results in the limitation of cruise velocity and acceleration of vehicle. Thirdly, it is required
to generate a feasible trajectory rapidly when the landing vertiport changes due to the congestion of the original target
vertiport or the vehicle has to conduct contingency operations such as emergency landing on-the-fly. In this paper, we
address these challenges by combining approaches from sampling-based path planning [8], trajectory optimization,
recurrent neural networks (RNN)[9], reinforcement learning (RL)[10] and generative adversarial imitation learning
(GAIL)[11] in order to perform real-time on-the-fly motion re-planning in the face of uncertainty in airspace.

In this study, we proposed two approaches that are coupled and decoupled algorithms for path planning and trajectory
optimization applications, respectively. Compared with past proposed classical methods that can achieve the same effect,
our methods have significantly shorter computation time and therefore enable real-time performance in UAM operation.
Vehicle with coupled algorithm is able to reach the destination as soon as possible under constraints of kinematics

∗Ph.D. Candidate, junlin.lou@cranfield.ac.uk, Student Member of AIAA.
†Postdoctoral Research Fellow, burak.yuksek@cranfield.ac.uk, Professional Member of AIAA.
‡BAE Systems Chair, Professor of Autonomous Systems and Artificial Intelligence, inalhan@cranfield.ac.uk, Associate Fellow of AIAA.
§Professor, Head of the Centre of Autonomous and Cyber-Physical Systems, a.tsourdos@cranfield.ac.uk, Senior Member of AIAA.

1

and dynamics. Decoupled algorithm guarantees the optimality of straight path fragments and allows aerial vehicle
with constraints to arrive at destination at scheduled time. Both approaches are based on the tree data generated by
sampling-based path planning algorithm RRT* or its extended algorithms. RRT* features as Asymptotic Optimality and
Probabilistic Completeness[12], which means adequate and intensive exploration of configuration space is necessary to
return a feasible and optimal path. Since sufficient exploration time is a prerequisite for RRT*-based algorithms, it is
almost impossible for them to plan paths in real-time. The benefit of utilizing tree data of RRT* is that the algorithm
can update and optimize the flight path with previous explorations, so that the only requirement is to consider the
approaches of updating tree data. Tree data generated by RRT* algorithm which contains a certain number of nodes, the
attributes of each node include index of itself, coordinates, cost to tree root, index of its parent node and may also include
velocities and accelerations. For current tree structure, all nodes have optimal paths from tree root. Tree root is defined
as current position of vehicle or the position of departure vertiport. Our objective is real-time update of the tree data in
dynamic environments, guaranteeing optimized attributes and connections (also known as index of parent) of nodes on
the tree as well as feasibility and optimality of the flight path to destination. If the local graph-rewiring technique of
RRT* are applied to update the connections, an amount of forward and backward propagation need to be performed and
real-time update would be almost impossible. Especially when on-the-fly update is required, root moving needs to be
executed and tree connections need to be optimized which results in high computational cost. Our approaches use RL
policy or GAIL generator to guide the update of tree connection and attributes of nodes, which make the algorithms
faster because expensive computations are replaced with simple neural network inference process. Moreover, another
advantage of our approaches is that they can change destination of the aerial vehicle at any time and generate a feasible
and optimal path from vehicle’s current position to the new destination in real-time. This is due to intensive exploration
resulting in tree nodes throughout the configuration space and tree data’s feature that paths from the root to all nodes on
the tree are optimized. To the best of our knowledge, this paper proposes one of the first approaches that is able to
perform on-the-fly update of destination and optimize path and trajectory in real-time while keeping all explorations.

The rest of the paper is organized as follows; in Section II, we mention about related works that contributed to
our research, as well as the shortcomings and limitations of some other approaches that achieve motion planning or
re-planning. In Section III, we propose the decoupled planning algorithm that generates minimum snap trajectory in
extremely short computation time via reinforcement learning and piecewise polynomial trajectory generation algorithm,
meanwhile guaranteeing sufficient exploration of the environment. In Section IV, we present the coupled planning
algorithm using generative adversarial imitation learning algorithm, which can directly generate time optimized trajectory
with significantly short computation time while ensuring sufficient exploration of configuration space as well. In Section
V, concluding remarks of this paper are given.

II. Related Works
Our approaches draw inspiration from the vast body of previous research. Sampling based path planning algorithm

rapidly exploring random tree [13] returns collision-free feasible path. Its variant RRT* [12] enables the cost of
solution to converge towards the optimum. Kinodynamic RRT* [14] extends RRT* by applying kinematic and dynamic
constraints and generates time-optimal trajectory. RL-RRT [15] is currently state-of-the-art kinodynamic planners in the
aspect of efficiency, which introduces RL policy into the combination of RRT and a kinodynamic motion planner, being
able to generate high quality time-optimal trajectory. In decoupled approach of motion planning, trajectory generation is
on the basis of a sequence of waypoints which are generated by the path planner. The algorithm of Minimum snap
trajectory for quadrotor[16] shows quadrotor dynamics with the four inputs is differentially flat. Therefore, it formulates
trajectory as a polynomial function and optimizes it by utilising quadratic programming (QP). There is also an algorithm
that generates more aggressive trajectories for quadrotor was proposed on the basis of time allocation algorithm for
way-points, algorithm of ensuring collision-free trajectories, algorithm of state estimation for quadrotor, furthermore
extends to trajectory generation for fixed-wing aircraft with Dubins-type dynamics [17]. Operator Splitting Quadratic
Program (OSQP) [18] as the state-of-art QP solver enables polynomial trajectory to be optimized and generated in
real-time [19].

An improved bidirectional RRT algorithm is utilized for path re-planning in dynamic environment in [20]. This
algorithm is able to update paths rapidly with a tree pruning technique that only keeps a bit of nodes in the configuration
space. The pruning technique leads to insufficient exploration of configuration space, and it can be seen from the
simulation results that the quality of generated paths is poor. Algorithms for on-the-fly real-time planning using
simplified tree data have also been proposed previously in [21]. The most important problem of this method is sacrificing
the exploration information of configuration space to obtain real-time re-planning. It should be necessary to explore

2

urban airspace intensively in order to connect and improve flight path with better solutions while considering the flight
safety since urban airspace is a complex and dynamic environment with uncertainties. A hybrid approach of virtual force
and A* search algorithm [22] is proposed for re-planning and it has promising results for simple problems. However, this
approach cannot avoid the explicit construction of configuration space, which can be prohibitive in complex planning
problems, especially for operations in high dimensional space. Inverse reinforcement learning [23] (IRL), a classical
imitation learning algorithm, is utilized for aerial vehicle path re-planning in dynamic environment [24] with the aid
of the RRT*. Unfortunately, IRL approach has many flaws such as complex implementation and requirement of the
reinforcement learning in an inner loop which makes it extremely expensive to run. When compared with the IRL,
GAIL is simpler to implement and consumes fewer computing resources. More importantly, IRL learns a cost function,
whereas GAIL learns a policy network, which means that IRL learns behavior, while GAIL learns policy to generate
behavior. Such a difference enables GAIL to particularly outperform IRL in the face of complex planning problems.

III. An Reinforcement Learning based approach for generating minimal snap trajectory
In this section, we present decoupled re-planning algorithm using reinforcement learning and online minimum snap

trajectory generation algorithm, which can re-plan the trajectory in significantly short computation time while ensuring
sufficient exploration of the environment. The first obvious problem with reinforcement learning is that we cannot use
the entire tree data as input to the policy network. Tree data contains massive nodes, and each node has several attributes.
The entire tree data can be regarded as an extremely high-dimensional vector, but it is impossible for reinforcement
learning to deal with such problems. Our solution is to use Recurrent Neural Networks as policy network of RL, which
is also the solutions of several other problems. Fig. 1 shows the policy network.

Fig. 1 Recurrent Neural Networks policy network of RL.

Proximal Policy Optimization (PPO) [25] is utilized in the training phase of the reinforcement learning framework.
This algorithm originates from Trust Region Policy Optimization (TRPO)[26] algorithm. TRPO applies second-order
trust region method to maximize the objective function, while PPO uses first-order method to simplify the implementation
and perform at least as well as TRPO. Furthermore, for the approach purposed in this section, PPO has other three main
advantages over other policy gradient learning algorithms. Firstly, it is less sensitive to learning rate, much easier to tune
hyper-parameters and performs more stable learning process. Secondly, hyper-parameters of the algorithm have robust
characteristics against variety of tasks[27]. Thirdly, PPO can achieve the same performance as other policy gradient
method with less state, action and reward collected.

Asymptotic Optimality of RRT* stems from ChooseParent and Rewire operations. In the ChooseParent operation, it
traverses the set of potential parent nodes that are inside a specific Euclidean distance of a child node, detecting collision,

3

updating the tree with most qualified parent node. Then, in the Rewire operation, it iterates through nodes within
neighbourhood area around new node. The new node becomes a parent of some nodes if no collision and cumulative
cost reduction happens.

The RNN policy network contains several dozens of node structures, sum of numbers of node structures in several
policy network is equivalent to the number of nodes in the tree data. We normally put 20 node structures in a policy
network. In training, agent learns to add connections for the environment that already exists some connections, such
design avoids the problem of too long sequences. Each node structure has 𝑛𝑐 + 1 tokens and each token outputs
an action, where 𝑛𝑐 donates the number of near nodes. This means that the 𝑛𝑐 nodes closest to each node will be
considered as its potential parents and potential children. The output of the first token of each node structure is an
𝑛𝑐-dimensional one-hot vector representing the selection of the parent node. The output of the second to 𝑛𝑐 + 1𝑡ℎ token
is a 2-dimensional one-hot vector representing whether to select the corresponding node as a child node. It can be found
that the dimensions of the output of these two decisions are different, but they need to be trained together. Being able to
handle such problems easily is also one of the benefits of using RNN as a policy network. Besides, each node can only
observe the current state of 𝑛-nearest nodes. In this situation, decision-making is difficult as agent can only partially
observe the environment. For reinforcement learning problems with incomplete observations, past observations should
be memorized, and all known information should be used to make decisions. This problem is solved with RNN policy
networks as well. The value of 𝑛𝑐 is a hyper-parameter that affects speed of convergence of reinforcement learning
algorithm and results of training. Since our algorithm has no step of sampling in configuration space, the condition of
Asymptotic Optimality cannot guide the choice of the value of 𝑛𝑐. After user definition of 𝑛𝑐, iterating over tree data
will be executed so as to find 𝑛𝑐 nearest nodes of each node, tree data will be updated by adding 𝑛𝑐 nearest nodes for
each node before training start.

Fig. 2 Details of token of RNN policy network

Fig. 2 shows the details of token of RNN policy network. Part of the node information 𝐹𝑡 undergoes data
pre-processing and then 𝑋𝑡 is obtained. The next step is inputting 𝑋𝑡 and the feature vector ℎ𝑡 output by the hidden layer
of the previous token into the hidden layer of the current token to obtain the feature vector ℎ𝑡+1, so that the state 𝑠𝑡
is [𝐹𝑡 , ℎ𝑡]. Here, we only use one hidden layer in each token. After fully connected layer and softmax activation, a
probability distribution 𝑝𝑡+1 will be generated, and finally the argmax function will be applied on 𝑝𝑡+1 to output an
action 𝑎𝑡+1. Therefore, the policy network is denoted as 𝜋(𝑎𝑡+1 | [𝐹𝑡 , ℎ𝑡]; 𝜃).

Fig. 3 shows the details of data pre-processing. 𝐹𝑡 is a three-dimension vector [𝑖𝑛𝑑𝑒𝑥, 𝑝𝑜𝑠𝑥, 𝑝𝑜𝑠𝑦] including index,
𝑥 coordinate and 𝑦 coordinate of the node. Obstacle information only needs to be input in the first token, and the RNN
will convey it to subsequent tokens. The index needs to be one-hot encoded, because the index does not represent the
numerical feature of the node, but a category. For example, if we use the index number directly, the computer will
misunderstand that the sum of the first node and the second node is equal to the third node, which is unreasonable. After
one-hot encoding, each index number becomes a 𝑘𝑣-dimensional vector, where 𝑘𝑣 is the number of nodes in the tree

4

Fig. 3 Details of data pre-processing

data. This vector is too sparse so that we need to reduce its dimension with embedding layer 1. Embedding layer 1 is a
𝑘𝑑 × 𝑘𝑣 matrix, and outputs a 𝑘𝑑-dimensional vector, 𝑘𝑑 is a hyper-parameter that needs to be adjusted by the user. The
two-dimensional coordinates of the nodes will be input into the embedding layer 2 which amplify the location features
of the nodes by increasing the dimension. Embedding layer 2 is a 𝑙𝑑 × 2 matrix that outputs a 𝑙𝑑-dimensional vector. 𝑙𝑑
is also a hyper-parameter that needs to be tuned by the user. Then the output of Embedding Layer 1 and Embedding
Layer 2 are concatenated into a vector, which is the aforementioned 𝑋𝑡 . The matrix parameter of Embedding Layers 1
and 2 will be learned via reinforcement learning in next step.

Initialize the parameter 𝜃 for new RNN policy network and parameter 𝜃𝑜𝑙𝑑 for old RNN policy network;
for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 ← 1 : 𝐾 do

clear tree connections, randomize obstacles, tree root and index of nodes;
𝜃 = 𝜃𝑜𝑙𝑑;
for 𝑖 ← 1 : 𝑚 do

for 𝑠𝑡𝑒𝑝 ← 1 : 𝑚(𝑛 + 1) do
collect state and action via 𝜋𝜃𝑜𝑙𝑑;
while 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑒𝑝 = 𝑖(𝑛 + 1) is True do

update tree connections;
collect reward;
update parameter 𝜃 of RNN policy network via equation (3);
𝜃𝑜𝑙𝑑 ← 𝜃;

end
end

end
Adapt the entropy regularization coefficient in equation (3) in the light of equation (6) and then update
entropy regularization with new policy network 𝜋𝜃 ;
return 𝜃;

end
Algorithm 1: Training of RNN policy network.

Algorithm 1 shows the process of training the RNN policy network through reinforcement learning. Randomizing
obstacles, node indexes and tree roots when each episode starts is to learn policy of on-the-fly re-planning in dynamic
environment and to guarantee the robustness. There are 𝑚 nodes in the tree data, and each episode contains 𝑚(𝑛 + 1)
steps. To train the policy network, we need to define the reward 𝑟𝑡 . In the first 𝑛 steps of each 𝑛 + 1 steps, the rewards
remain zero.

𝑟 (𝑖−1) (𝑛+1)+1 = 𝑟 (𝑖−1) (𝑛+1)+2 = · · · = 𝑟 (𝑖−1) (𝑛+1)+𝑛 = 0 (1)

5

After 𝑛 + 1 step, all decisions are obtained to ensure a node structure, then updating tree data, collecting reward and
updating return (aka cumulative reward) 𝑢𝑡 . The normalized reward includes;

• connecting each previously unconnected node
• each node that has less cost
• each connection that collides with obstacles
• euclidean distance from each node to the tree root
• a big punishment if parent is also connected as child

At the beginning of each episode, each node are orphan node and each node’s cost to tree root is infinite. When the
tree growing from the root is connected to an orphan node, the cost becomes a finite real numbers and a fixed reward
is obtained. If subsequent updates of tree data reduce the cost from a node to tree root, a normalized reward will be
obtained.

All steps inside each package of 𝑛 + 1 steps have the same return.

𝑢 (𝑖−1) (𝑛+1)+1 = 𝑢 (𝑖−1) (𝑛+1)+2 = · · · = 𝑢𝑖 (𝑛+1) = 𝑢 (𝑖−1) (𝑛+1) + 𝑟𝑖 (𝑛+1) (2)

Afterwards, with Proximal Policy Optimization (PPO) algorithm[25], parameter of policy network will be updated
once every 𝑛 + 1 steps via clipping surrogate objective showed in equation (3)

𝐿𝑐𝑙𝑖 𝑝 (𝜃) = E(𝑚𝑖𝑛(𝑟 (𝜃)𝐴𝜃𝑜𝑙𝑑 ([𝐹𝑡 , ℎ𝑡], 𝑎𝑡+1)), 𝑐𝑙𝑖𝑝(𝑟 (𝜃), 1 − 𝜖, 1 + 𝜖)𝐴𝜃𝑜𝑙𝑑 ([𝐹𝑡 , ℎ𝑡], 𝑎𝑡+1)
+𝜆𝐻 ([𝐹𝑡 , ℎ𝑡], 𝑎𝑡+1))

(3)

where 𝜖 is a hyper-parameter to control the clipping ratio. E[·] denotes the expectation operator obtained by Monte
Carlo approximation[28]. 𝐴𝜃𝑜𝑙𝑑 [·] is advantage function under old policy. 𝑟 (𝜃) in Equation (3) denotes the probability
ratio

𝑟𝑡 (𝜃) =
𝜋𝜃 ((𝑎𝑡+1 | [𝐹𝑡 , ℎ𝑡]))
𝜋𝜃𝑜𝑙𝑑 ((𝑎𝑡+1 | [𝐹𝑡 , ℎ𝑡]))

(4)

𝐻 [·] is entropy operator displayed in equation (5). Entropy is used to measure the probability distribution
output by softmax activation function in the policy network. Smaller entropy leads to more concentrated probability
distribution. We found that entropy shrinks to a small value prematurely during training process, resulting in insufficient
exploration in policy learning, therefore obtaining a defective policy. In face of this problem, we then introduce entropy
regularization[29] to Equation (3).

𝐻 [𝑠𝑡 ; 𝜃] = −
∑︁

𝜋(𝑎𝑡+1 |𝑠𝑡 ; 𝜃) ln 𝜋(𝑎𝑡+1 |𝑠𝑡 ; 𝜃) (5)

𝜆 donates adaptive entropy regularization coefficient showed in Equation (6).

𝜆 = 𝜇 tanh
𝑒𝑝𝑖𝑠𝑜𝑑𝑒

𝜂
(6)

where 𝜇 and 𝜂 are hyper-parameters that determine 𝜆.
Although the standard RNN has an efficient structure for the generation of sequential tree data in our case, it has

vanishing and exploding gradient problems[30] since its principle is based on simple iterative way. The standard RNN
is therefore not appropriate for problem of long-term dependencies. As the policy network of the approach proposed
in this section has long sequence, we introduce Long Short-Term Memory (LSTM)[31] and Gated Recurrent Unit
(GRU)[32] in our actual simulation in order to overcome the drawbacks of the standard RNN. LSTM uses a conveyor
belt to get longer memory than standard RNN and avoids the issues of exploding and vanishing gradients existing in
RNN while the algorithm structure is far more complex. Each token of LSTM has four blocks named Forget Gate, Input
Gate, New Values and Output Gate respectively. Each block also has a parameter matrix and these matrices have the
same size, shape of ℎ𝑡× shape of (ℎ𝑡 + 𝑋𝑡). GRU has a simpler architecture, compared with LSTM, but has similar
performance. There are three blocks with parameter matrix, which are Reset gate, Update gate and Candidate hidden
state. Fewer parameters result in faster computation of GRU than that of LSTM as less memory is required.

6

The next step in this method is to generate a safe trajectory from the obtained waypoints and predefined total time.
In our case, multi-copter with four rotor systems is regarded as the vehicle in simulation, so that we can follow the
minimum snap formulation for quadrotor trajectory generation[16]. It shows piecewise polynomial trajectories can be
utilized to specify flat outputs of coordinates of various dimensions and yaw angle 𝑥, 𝑦, 𝑧, 𝜓 and their derivatives for
smooth trajectory since vehicle similar to quadrotor possesses differential flatness characteristic. The cruise phase of
the UAM vehicle will be limited to an altitude range in the urban airspace, as well as there will be insignificant flight
altitude changes during this stage[1], so that we will ignore the planning of 𝑧 coordinate. Besides, the planning for yaw
angle will be left as future work.

Given the start-time of trajectory and all end-times of segments (𝜏0, 𝜏1, 𝜏2,· · · ,𝜏𝑀), one dimension out of 𝑥, 𝑦 of the
𝑀-segment, 𝑁 𝑡ℎ order piecewise polynomial trajectory[33] can be written as Equation (7).

𝑓 (𝜏) =



∑𝑁
𝑗=0 𝑐1 𝑗 (𝜏 − 𝜏0) 𝑗 , 𝜏0 ≤ 𝜏 ≤ 𝜏1,∑𝑁
𝑗=0 𝑐2 𝑗 (𝜏 − 𝜏1) 𝑗 , 𝜏1 ≤ 𝜏 ≤ 𝜏2,

...∑𝑁
𝑗=0 𝑐𝑀 𝑗 (𝜏 − 𝜏𝑀−1) 𝑗 , 𝜏𝑀−1 ≤ 𝜏 ≤ 𝜏𝑀

(7)

where 𝑐𝑖 𝑗 is the 𝑗 𝑡ℎ order polynomial coefficient of the 𝑖𝑡ℎ segment. As Minimum snap trajectory is required, we phrase
the problem as the generic minimization of the 4𝑡ℎ derivative of 𝑓 (𝜏). In that case, the trajectory optimization problem
for flat polynomial output is described as equation (8)

min
∫ 𝜏𝑀

𝜏0

(
𝑑4 𝑓 (𝜏)
𝑑𝜏4

)2

𝑑𝜏 (8)

The objective function (8) can be written as min p𝑇Qp and min
∑𝑀

𝑖=1p𝑇Q𝑖p, where p = [p𝑇
1 , p

𝑇
2 , · · · , p

𝑇
𝑖
, · · · , p𝑇

𝑀
]𝑇

is the vector of the polynomial coefficients of all segments[16][17], Q𝑖 and Q are shown as (9) and (10)

Q𝑖 =


04,4 04,𝑁−3

0𝑁−3,4
𝑞𝑟 !
(𝑞𝑟−4)!

𝑞𝑐!
(𝑞𝑐−4)!

𝑡
𝑞𝑟 +𝑞𝑐−7
𝑖

−𝑡𝑞𝑟 +𝑞𝑐−7
𝑖−1

𝑞𝑟+𝑞𝑐−7

 (9)

Q =


Q1

Q2
. . .

Q𝑀


(10)

where 4 ≤ 𝑞𝑟 ≤ 𝑁, 𝑞𝑟 ∈ N is the row index starting from number 0 as well as 4 ≤ 𝑞𝑐 ≤ 𝑁, 𝑞𝑐 ∈ N is the column index
starting from number 0.

The trajectory has predefined start point, way-points and end point, as well as the vehicle following the trajectory
has dynamic constraints. Moreover, to ensure continuity of trajectory, we enforce the same velocity and acceleration for
adjacent segments at the segment-transition times (𝜏1, · · · , 𝜏𝑀−1). The conditions mentioned above can be formulated
as either linear equality (A𝑒𝑞p = b𝑒𝑞) or inequality (A𝑙𝑞p ≤ b𝑙𝑞) constraints. As a result, we form a quadratic
programming problem (QP) for trajectory generation, shown in Equation (11).

min p𝑇Qp
s.t. A𝑒𝑞p = b𝑒𝑞

A𝑙𝑞p ≤ b𝑙𝑞

(11)

In our scenario, the total time of the trajectory is fixed, we need to assign a time amount (𝜏𝑖 − 𝜏𝑖−1) to each segment,
and these time allocation will factor into the construction of the cost matrix. It is necessary to apply a specific algorithm
to optimize the time allocation, as it directly affects the quality of final trajectory generated. The classic method is to

7

begin with an initial guess of segment times and then iteratively refine those times using gradient descent [16] [17].
This kind of method is relatively time-consuming as well as has a big challenge to achieve real-time. Additionally,
some trajectory segments that are overly convex in shape may intersect obstacles, even though the path on which the
way-points follow is collision-free. To address these two issues, inspired by the work of Chen et al.[33], we introduce
corridor as constraint into the QP problem.

Fig. 4 Trajectory generation with corridor for collision avoidance and implicit time optimization

As shown in Figure 4, we uniformly add some sub-waypoints in the path, then define a inequality constraint
about their position. Meanwhile, we change the strong constraint about position of waypoints into weak constraint,
which allows the trajectory to pass around the waypoints instead of having to pass through the way-points. With the
weak constraint defined in Equation (12), the problem that vehicle has to pass a certain position at predefined time is
transformed to arriving inside a square area at the predefined time. Such an algorithm makes implicit time optimization
through adjustment of segment transition points. Although this method actually increases the number of segments,
it can generate a trajectory in approximately 0.1 seconds with the state-of-art QP solver OSQP [18], since iterations
are not required in computing. Moreover, this approach simultaneously confine the trajectory to a corridor formed by
several square areas.

[1, 𝜏𝜙 , 𝜏2
𝜙 , · · · , 𝜏𝑁𝜙]𝑝𝜙 ≤ 𝑝𝜙 (𝜏𝜙) + 𝑑𝑐𝑜𝑟

[−1,−𝜏𝜙 ,−𝜏2
𝜙 , · · · ,−𝜏𝑁𝜙]𝑝𝜙 ≤ −𝑝𝜙 (𝜏𝜙) + 𝑑𝑐𝑜𝑟

(12)

where 𝑝𝜙 and 𝜏𝜙 are positions and allocated time for particular waypoints or sub waypoints, 𝑑𝑐𝑜𝑟 denotes half the side
length of the square area. The value of 𝑑𝑐𝑜𝑟 is set manually by the user, but it cannot be too small in order to keep the
square areas connected to form a corridor, and

√
2𝑑𝑐𝑜𝑟 cannot be greater than the difference between clearance defined

in path planning algorithm and the flight interval stipulated by the local traffic regulations.
Figure 5 displays solving real-time motion re-planning problem with fixed start point in dynamics environment

utilizing the decoupled approach proposed in this section. It can be found that, as long as using the tree data with
sufficient exploration, even without sampling of the configuration space, our approach can plan or re-plan path with
high quality in dynamic environment via updating and optimizing the connections between existing tree nodes. Then a
collision-free trajectory that has optimized snap is simultaneously generated in accordance with path. Figure 6 shows
the results that vehicle is on the fly. The tree node closet to the position where on-the-fly vehicle needs to execute
re-planning will be defined as new tree root (as known as start point of path planning). The path re-planning method
proposed in this section has a significant merit that enables user to directly change start point without extra processing
such as root moving algorithm[21]. After way-points obtained, we determine the initial state of trajectory as the current
position, velocity and acceleration of aerial vehicle rather than start point of path, then generate trajectory. Figure 6(a),
6(b), and 6(c) illustrate the simulation results that our vehicle performs real-time motion re-planning by the approach
proposed in this section during flight when the original trajectory became infeasible due to uncertain and dynamic

8

(a) Situation 1 (b) Situation 2 (c) Situation 3

Fig. 5 Real-time motion re-planning in dynamics environment

obstacles. The red straight line segments are the path generated by RNN policy network and the green curves are
minimal snap trajectories. Figure 6(e) shows that if the final landing point needs to be changed for some reason such
as emergency situations, this method can still rapidly re-plan a safe and optimized trajectory. Figure 6(d) and 6(f)
demonstrate that our approach guarantees the continuity of trajectory undergoing re-planning.

(a) Situation 1 (b) Situation 2 (c) Situation 3

(d) trajectory re-planning 1 (e) Situation 4 (f) trajectory re-planning 4

Fig. 6 Real-time on-the-fly re-planning in dynamics environment

Table 1 shows results of simulation executing times on computer with AMD Ryzen 9 5900x CPU, NVIDIA RTX

9

3090 GPU and 32GB RAM. The benchmark used is the combination of Informed RRT*[34] and Richter et al.’s method
using technique of substitution to convert trajectory generation problem into an unconstrained QP in order to avoid the
issues of ill-conditioning and increase the efficiency when there are many way-points and segments in a trajectory[17].
In various configuration of simulation, our algorithm on the basis of a set of tree data containing 800 nodes uses
LSTM or GRU as policy network as well as has 20, 16, 12 or 8 potential parents and children. NVIDIA CUDA Deep
Neural Network library (cuDNN) is applied in order to GPU-accelerate the execution of LSTM and GRU. We randomly
sampled 20 environments similar to Figure 6, applying each algorithm separately on each environment, obtaining snaps
and mean computation time of each algorithm and finally calculating mean normalized snap after normalizing snaps
with that of benchmark algorithm. It can be found that our proposed method has significantly short computation time
when compared to the benchmark algorithm, while the quality of the obtained trajectories is not much lower than that
generated by the benchmark algorithm.

Table 1 Simulation results of decoupled motion planning approach

Algorithm Mean Compute Mean Normalized
Time (s) Snap

Info. RRT* + poly 16.19 1.00
Our method with LSTM, 𝑛𝑐=20 5.07 1.09
Our method with LSTM, 𝑛𝑐=16 4.13 1.10
Our method with LSTM, 𝑛𝑐=12 2.99 1.17
Our method with LSTM, 𝑛𝑐=8 1.82 1.29
Our method with GRU, 𝑛𝑐=20 3.41 1.07
Our method with GRU, 𝑛𝑐=16 2.65 1.09
Our method with GRU, 𝑛𝑐=12 1.93 1.17
Our method with GRU, 𝑛𝑐=8 1.27 1.32

IV. Approach based on Generative adversarial imitation learning
In this section, we propose a coupled planning algorithm that generates the time-optimal trajectory in extremely short

computation time via generative adversarial imitation learning (GAIL) algorithm[11], meanwhile guaranteeing sufficient
exploration of the environment. This method also performs motion planning and re-planning on the basis of existing tree
data, but the algorithm for producing tree data is Kinodynamic RRT*[14]. Unlike RRT*, the step size of Kinodynamic
RRT* is not Euclidean distance but time difference, as well as the connection between the tree nodes generated by
Kinodynamic RRT* is not a straight line, but a curve trajectory that conforms to kinematic and dynamic constraints. In
addition, each node in Kinodynamic RRT* tree data has more attributes than that of RRT*. Each Kinodynamic RRT*
tree node contains the index of itself, the index of parent, the time cost to reach the node from starting point, as well as
the coordinate, velocity, and acceleration of each dimension. If we still use reinforcement learning-based approach,
complex tree data will lead to bloated reward functions, highly raising the difficulty of designing appropriate rewards,
and violating our intention of pursuing simpler but effective approaches. If we still use reinforcement learning-based
approach, complex tree data will lead to bloated reward functions, highly raising the difficulty of designing appropriate
rewards, and violating our intention of pursuing simpler but effective approaches. Hence, we utilize the approach based
on GAIL, which has advantages in implementing and tuning hyper-parameters because it does not require the design of
reward function compared to RL algorithms.

GAIL requires the agent to interact with the environment, but cannot get rewards from the environment. In addition,
GAIL needs an object to be imitated, and in practice, it needs to collect the decision-making records of the imitated
object. In our method, this imitated object is Kinodynamic RRT*. Equation 13 shows the decision-making record
𝜏𝑟𝑒𝑎𝑙 created by Kinodynamic RRT*. Where 𝑠𝑟𝑒𝑎𝑙𝑡 are consistent every five time steps in two-dimensional motion
planning and donates node index and positions, 𝑎𝑟𝑒𝑎𝑙𝑡 represents the parent selection, single-dimensional velocity and
acceleration of the corresponding 𝑠𝑟𝑒𝑎𝑙𝑡 .

10

𝜏𝑟𝑒𝑎𝑙 = [𝑠𝑟𝑒𝑎𝑙1 , 𝑎𝑟𝑒𝑎𝑙1 , 𝑠𝑟𝑒𝑎𝑙2 , 𝑎𝑟𝑒𝑎𝑙2 , · · · , 𝑠𝑟𝑒𝑎𝑙𝑡 , 𝑎𝑟𝑒𝑎𝑙𝑡 , · · · , 𝑠𝑟𝑒𝑎𝑙𝑚 , 𝑎𝑟𝑒𝑎𝑙𝑚] (13)

The GAIL consists of a generator and a discriminator. The generator is a policy network that makes decisions and
we will use PPO[25] to train the generator. The target of GAIL is to learn a policy network such that the discriminator
cannot distinguish whether a decision is made by the policy network or the imitated object. The discriminator is a
neural network that will be trained by gradient descent. Training makes discriminator more accurate to determine where
decisions are coming from and this adversarial approach to mutual progress is the main idea of GAIL.

As mentioned previously, PPO will be used as our algorithm for training the policy network. Similar to the method
in Section III, we cannot use the entire tree data as input to the policy network, since tree data contains many nodes, and
each node has several attributes, which makes tree data actually a very high-dimensional vector that PPO is unable to
process. Therefore, we still apply recurrent neural network as the policy network (as known as generator) of GAIL in
terms of handling this problem, figure 7 shows the details of the RNN policy network.

Fig. 7 Using Recurrent Neural Networks as policy network of GAIL.

The RNN policy network of GAIL still contains node structures whose number is equivalent to the number of nodes
in the tree data. Each node structure can be regarded as a set of single-input multi-output RNN sequence. In two
dimensional motion planning, each node structure has 5 tokens and each token outputs an action. The design of the
first token in each node structure is very similar to that in section III, the input 𝑋𝑡 is pre-processed 𝐺𝑡 that contains
node index and position, and its output 𝑎𝑡 is an 𝑚𝑐-dimensional one-hot vector representing the selection of the parent
node. The value of 𝑚𝑐 is a manually tuned hyper-parameter that affects speed of convergence of reinforcement learning
algorithm and results of training. Before training start, the algorithm will iterate over the tree data and update tree data
by adding 𝑚𝑐 nearest nodes for each tree node. Closer nodes also represent shorter arrival times when zero initial
velocity and acceleration. The output of the second token of each node is a single-dimensional velocity whose value
depends on the position of node itself and the choice of the parent node, as well as is influenced by other nodes. The
hidden layer of RNN contains information of index and position of current node, and historical information of some
other nodes. The input of the second token 𝑋𝑡+1 is the output of the first token (as known as the selection of parent) after
going through the embedding layer. The output of the third token of each node is also a single-dimensional velocity
whose value depends on the position of node itself, the choice of the parent node, and the obtained velocity of another
dimension, as well as is influenced by other nodes. The input of the third token 𝑋𝑡+2 is therefore the output of the
second token after going through the embedding layer. The input of the fourth token is the output of the third token after
going through the embedding layer since the output of the fourth token is a single-dimensional acceleration which also

11

depends on velocity. The input of the fifth token is similar to that of previous tokens. In the second to fifth tokens of
each node, we utilize gained tanh as the activation function to output the velocity and acceleration of each dimension.
tanh is a center-symmetric function and monotonically increasing in a certain range, so that the RNN policy network
has equivalent performance regardless of whether the output velocity and acceleration of each dimension are positive or
negative. Gain is determined in accordance with velocity and acceleration constraints. It is worth mentioning that these
four embedding layers between every two tokens in the structure of each node are different as they perform different
tasks, whereas all node structures share the set of these four embedding layers because they separately execute the same
tasks in each node. Similar to approach proposed in Section III, we do not use standard RNN in fact, but use GRU to
avoid the problem of gradient vanishing and gradient explosion, each token has two hidden layers. Equation 14 displays
the decision-making record 𝜏 𝑓 𝑎𝑘𝑒 created by the RNN policy network. Where 𝑠 𝑓 𝑎𝑘𝑒𝑡 are also consistent every five time
steps in two-dimensional motion planning and donates node index and positions, 𝑎 𝑓 𝑎𝑘𝑒

𝑡 represents the parent selection,
single-dimensional velocity and acceleration of the corresponding 𝑠 𝑓 𝑎𝑘𝑒𝑡 , and 𝑚 is the number of tokens in the RNN
policy network.

𝜏 𝑓 𝑎𝑘𝑒 = [𝑠 𝑓 𝑎𝑘𝑒1 , 𝑎
𝑓 𝑎𝑘𝑒

1 , 𝑠
𝑓 𝑎𝑘𝑒

2 , 𝑎
𝑓 𝑎𝑘𝑒

2 , · · · , 𝑠 𝑓 𝑎𝑘𝑒𝑡 , 𝑎
𝑓 𝑎𝑘𝑒
𝑡 , · · · , 𝑠 𝑓 𝑎𝑘𝑒𝑚 , 𝑎

𝑓 𝑎𝑘𝑒
𝑚] (14)

The discriminator of GAIL is a neural network whose structure is shown in Figure 8. The essence of the discriminator
is actually a binary classifier. Its output value 𝐷 (𝑠𝑡 , 𝑎𝑡 |𝜙) represents the judgment of authenticity, where 𝜙 is the neural
network parameter. The closer the output is to 1, the more true it is, that is, the action is produced by Kinodynamic
RRT*, and the closer the output is to 0, the more false it is, that is generated by the policy network.

Fig. 8 Discriminator of GAIL

The goal of training GAIL is to make the generator (as known as the RNN policy network) produce a record of
decisions that are as good as those of the imitated object. At the end of training, the discriminator cannot distinguish
between the generator’s decision records and the imitated object’s decision records. Therefore, while training the
generator, we need to train the discriminator simultaneously, and only if the discriminator is good enough, the generator
that can fool it will get satisfactory results. When training the discriminator, we encourage it to make more accurate
judgments. We want the discriminator to know that (𝑠𝑟𝑒𝑎𝑙𝑡 , 𝑎𝑟𝑒𝑎𝑙𝑡) is true, so 𝐷 (𝑠𝑟𝑒𝑎𝑙𝑡 , 𝑎𝑟𝑒𝑎𝑙𝑡 |𝜙) should be encouraged to
be as large as possible. We want the discriminator to know that (𝑠 𝑓 𝑎𝑘𝑒𝑡 , 𝑎

𝑓 𝑎𝑘𝑒
𝑡) is false, so 𝐷 (𝑠 𝑓 𝑎𝑘𝑒𝑡 , 𝑎

𝑓 𝑎𝑘𝑒
𝑡 |𝜙) should be

encouraged to be as small as possible. Equation 15 defines the loss function.

𝐹 (𝜏𝑟𝑒𝑎𝑙 , 𝜏 𝑓 𝑎𝑘𝑒 |𝜙) = 1
𝑚

𝑚∑︁
𝑡=1

ln [1 − 𝐷 (𝑠𝑟𝑒𝑎𝑙𝑡 , 𝑎𝑟𝑒𝑎𝑙𝑡 |𝜙)] + 1
𝑚

𝑚∑︁
𝑡=1

ln [𝐷 (𝑠 𝑓 𝑎𝑘𝑒𝑡 , 𝑎
𝑓 𝑎𝑘𝑒
𝑡 |𝜙) (15)

We expect the loss function to be as small as possible, so that we can use gradient descent to update parameters 𝜙,
which is shown in function 16.

𝜙← 𝜙 − 𝛽∇𝜙𝐹 (𝜏𝑟𝑒𝑎𝑙 , 𝜏 𝑓 𝑎𝑘𝑒 |𝜙) (16)

12

Where 𝛽 donates the learning rate and ∇𝜙 is the gradient. The larger the output 𝐷 (𝑠 𝑓 𝑎𝑘𝑒𝑡 , 𝑎
𝑓 𝑎𝑘𝑒
𝑡 |𝜙) of the

discriminator, the more similar the decisions generated by the RNN policy network to those generated by Kinodynamic
RRT*, and the more successful the imitation learning, therefore, we substitute the reward 𝑢𝑡 with Equation 17.

𝑢𝑡 = ln𝐷 (𝑠 𝑓 𝑎𝑘𝑒𝑡 , 𝑎
𝑓 𝑎𝑘𝑒
𝑡 |𝜙) (17)

Then according to 𝑢𝑡 , we can apply the PPO algorithm to train the RNN policy network 𝜋𝜃 of GAIL with equation
18 and 19.

𝐿𝑐𝑙𝑖 𝑝 (𝜃) = E(𝑚𝑖𝑛(𝑟 (𝜃)𝐴𝜃𝑜𝑙𝑑 ([𝑋𝑡 , ℎ𝑡−1], 𝑎𝑡)), 𝑐𝑙𝑖𝑝(𝑟 (𝜃), 1 − 𝜖, 1 + 𝜖)𝐴𝜃𝑜𝑙𝑑 ([𝑋𝑡 , ℎ𝑡−1], 𝑎𝑡) (18)

𝑟𝑡 (𝜃) =
𝜋𝜃 ((𝑎𝑡 | [𝑋𝑡 , ℎ𝑡−1]))
𝜋𝜃𝑜𝑙𝑑 ((𝑎𝑡 | [𝑋𝑡 , ℎ𝑡−1]))

(19)

where 𝜖 is a hyper-parameter to control the clipping ratio. E[·] denotes the expectation operator. 𝐴𝜃𝑜𝑙𝑑 [·] is
advantage function under old policy. 𝑟 (𝜃) denotes the probability ratio.

The training performance of the RNN policy network acting as the generator of GAIL is strongly dependent on the
hyper-parameters of PPO algorithm. The discriminator that outputs rewards for PPO algorithm is a neural network,
which is also dependent on the selection of hyper-parameters. Therefore, optimizing hyper-parameters is essential
since this approach is highly sensitive to hyper-parameters. Among the commonly used hyper-parameter optimization
methods for machine learning, Bayesian hyper-parameter optimization methods have shown advantages in both accuracy
and efficiency compared to grid search and random search[35] as this optimization problem has no explicit objective
function expression.

The core in the Bayesian optimization method includes a Surrogate Model and a Acquisition Function. In our
approach, Gaussian process model (GP) is applied as Surrogate Model. The Gaussian process is a joint distribution of a
series of random variables that obey the normal distribution. Based on this model, the distribution of the objective
function 𝑓 (𝑥) can be estimated from the mean value 𝜇(𝑥), and the uncertainty of each position can be obtained from
variance 𝜎(𝑥). Where 𝑥 is a set of hyper-parameters and 𝑓 (𝑥) is the mean ratio of time cost of trajectories respectively
generated by RNN policy network and the benchmark algorithm kinodynamic RRT* in Monte Carlo simulation. In
detail, We randomly generated 1000 sets of different starting points and target points, as well as obstacle positions, for
Monte Carlo simulation. The Euclidean distances between the starting points and the target points are greater than
a threshold. Our proposed method and the baseline classical method will respectively generate a trajectory in each
environment and then obtain the ratio of time cost of the two trajectories, finally obtain the mean ratio of time cost of
1000 environments.

After constructing the Surrogate Model, the Acquisition Function is used to determine the next set of hyper-parameters,
trading off exploration (sampling from high uncertainty areas) and exploitation (sampling from high-value areas). The
process will be iterated multiple times until it is close to the global optimum. The next set of hyper-parameters is
determined as Equation 20.

𝑥𝑛+1 = arg max
𝑥
𝑔(𝑥 |𝑋) (20)

where 𝑔(𝑥 |𝑋) is the Acquisition Function and 𝑋 is the 𝑛 observation points from 𝑓 (𝑥) so far.
The expected improvement (EI) is a common choice as the Acquisition Function and it can be evaluated under the

GP model as Equation 21 [36]

𝐸𝐼 (𝑥) =


(𝜇(𝑥) − 𝑓 (𝑥+ − 𝜉))Φ(𝑍) + 𝜎(𝑥)𝜙(𝑍), 𝜎(𝑥) > 0

0, 𝜎(𝑥) = 0
(21)

where

𝑍 =


𝜇 (𝑥)− 𝑓 (𝑥+−𝜉)

𝜎 (𝑥) , 𝜎(𝑥) > 0

0, 𝜎(𝑥) = 0
(22)

13

where 𝜙(·) and Φ(·) are the standard normal density and standard normal distribution function. The first term
(𝜇(𝑥) − 𝑓 (𝑥+ − 𝜉))Φ(𝑍) in Equation 21 is used for exploitation, the second term 𝜎(𝑥)𝜙(𝑍) is used for exploration, the
parameter 𝜉 determines the proportion of exploration.

Additionally, when the vehicle that needs to do motion planning changes, that is, the speed and acceleration limits of
the vehicle change, we do not need to entirely retrain an RNN policy network, but do fine-tuning on the basis of the
RNN policy network trained previously. Fine-tuning will perform the following five steps;

• changing values of gain of gained tanh activation function
• setting independent learning rates for the two hidden layers of the RNN policy network
• fine-tuning by GAIL with less episodes
• applying Bayesian hyper-parameter optimization method
• using Greedy Soup receipt of Model Soups method[37]

Model soups is a method to average the weights of multiple models fine-tuned with different hyper-parameter
configurations, resulting in improving accuracy and robustness, without incurring any additional inference or memory
costs. The greedy soup is constructed by sequentially adding each model as a potential ingredient in the soup, and only
keeping the model in the soup if performance on a held out validation set evaluated by Monte Carlo simulation result
improves. Before running this procedure we sort the models in decreasing order of validation set accuracy, and so the
greedy soup can be no worse than the best individual model on the held-out validation set[37].

(a) Situation 1 (b) Situation 2

Fig. 9 GAIL based motion planning

Figure 9 shows the results produced by approach based on GAIL. It can be found that our algorithm successfully
generates a collision-free tree with curve connections and obtains a safe trajectory. Besides, GRU is utilized as the
RNN policy network, as well as applying cuDNN acceleration. Based on a tree data of 1200 nodes, extremely short
computation time is required to generate the trajectory using the trained policy network, only around three seconds on
our device, while it takes more than two minutes to complete 1200 iterations using Kinodynamic RRT*.

Figure 10(a) shows the Monte Carlo simulation results produced by approach based on GAIL. After applying a
Bayesian hyper-parameter optimization method, it can be found that the properties of the resulting trees, including
velocity, acceleration, and the time that takes to reach the node, are close to the results of Kinodynamic RRT*. Figure
10(b) displays the Monte Carlo simulation results for fine-tuning based on original generated RNN policy network.
In this scene, velocity limit is increased by half and acceleration limit is doubled. As shown in 2, with Bayesian
hyper-parameter optimization and Greedy soup, the performance of fine-tuned policy network for new vehicle is close
to that of original policy network.

14

Table 2 Monte Carlo simulation results of coupled motion planning approach

Algorithm Mean Compute Mean Normalized
Time (s) Time to reach the goal position

Kinodynamic RRT* 121 1.00
Original policy network by our method 3.24 1.09
Fine-tuned policy network by our method 3.31 1.10

(a) Original RNN policy network (b) Fine-tuned RNN policy network

Fig. 10 Monte Carlo simulation for GAIL based motion planning and Fine-tuning

V. Conclusion and Future work
In this paper, we presented two novel approaches in the face of challenges of motion planning and re-planning in

UAM operations in the presence of uncertainty of the environment, kinematic and dynamic constraints of the vehicle
and possible emergency situations. Both of our methods utilise the tree data generated by RRT* based algorithm,
which ensures ample exploration of the configuration space. Moreover, we apply neural network inference instead of
math-based algorithm to update the tree data, which makes our approaches suitable for real-time application in UAM
operations due to their short computation times.

The first approach is a decoupled approach, in which we design a policy network based on recurrent neural network
for the reinforcement learning algorithm in terms of addressing three issues. These three issues are; a) input vector has
significantly high dimension, b) input and output vectors of consecutive steps have different dimensions, and c) agent is
unable to observe global environment. Afterwards, we combine an online trajectory generation algorithm to obtain
the minimal snap trajectory for the vehicle. Simulation results demonstrate that this method can generate high-quality
trajectories in extremely short computation time. Furthermore, it enables on-the-fly motion re-planning, the re-planned
trajectory maintains continuity for executed trajectory.

We also propose a coupled method that generates time optimized trajectory. We design a single-input multiple-output
RNN policy network for this method, and utilize GAIL to train the policy network so as to generate similar decisions to
Kinodynamic RRT*. The results show that this approach can update and generate collision-free global tree data in a
very short time, we use Bayesian hyperparameter optimization to solve the problem that the results of this method are
extremely dependent on the hyper-parameter configuration. In addition, we design a model soup-based fine-tuning
method for the problem of changing to vehicles with different velocitys and accelerations, which avoids the need to
retrain a policy network, as well as the performance of the fine-tuned model is close to the original model.

15

References
[1] Bauranov, A., and Rakas, J., “Designing airspace for urban air mobility: A review of concepts and approaches,” Progress in

Aerospace Sciences, Vol. 125, 2021, p. 100726.

[2] Yu, X., and Zhang, Y., “Sense and avoid technologies with applications to unmanned aircraft systems: Review and prospects,”
Progress in Aerospace Sciences, Vol. 74, 2015, pp. 152–166.

[3] Murray, C. W., Ireland, M., and Anderson, D., “On the response of an autonomous quadrotor operating in a turbulent urban
environment,” AUVSI’s unmanned systems conference, 2014.

[4] Logan, M. J., Bird, E., Hernandez, L., and Menard, M., “Operational Considerations of Small UAS in Urban Canyons,” AIAA
Scitech 2020 Forum, 2020, p. 1483.

[5] Pang, B., Ng, E. M., and Low, K. H., “UAV trajectory estimation and deviation analysis for contingency management in urban
environments,” AIAA Aviation 2020 Forum, 2020, p. 2919.

[6] for Aeronautics, R. T. C., Minimum Aviation System Performance Standards for Automatic Dependent Surveillance Broadcast
(ADS-S)., RTCA, Incorporated, 2002.

[7] Dill, E. T., Young, S. D., and Hayhurst, K. J., “SAFEGUARD: An assured safety net technology for UAS,” 2016 IEEE/AIAA
35th digital avionics systems conference (DASC), IEEE, 2016, pp. 1–10.

[8] LaValle, S. M., Planning algorithms, Cambridge university press, 2006.

[9] Medsker, L. R., and Jain, L., “Recurrent neural networks,” Design and Applications, Vol. 5, 2001, pp. 64–67.

[10] Sutton, R. S., and Barto, A. G., Reinforcement learning: An introduction, MIT press, 2018.

[11] Ho, J., and Ermon, S., “Generative adversarial imitation learning,” Advances in neural information processing systems, Vol. 29,
2016.

[12] Karaman, S., and Frazzoli, E., “Sampling-based algorithms for optimal motion planning,” The international journal of robotics
research, Vol. 30, No. 7, 2011, pp. 846–894.

[13] LaValle, S. M., et al., “Rapidly-exploring random trees: A new tool for path planning,” 1998.

[14] Webb, D. J., and Van Den Berg, J., “Kinodynamic RRT*: Asymptotically optimal motion planning for robots with linear
dynamics,” 2013 IEEE international conference on robotics and automation, IEEE, 2013, pp. 5054–5061.

[15] Chiang, H.-T. L., Hsu, J., Fiser, M., Tapia, L., and Faust, A., “RL-RRT: Kinodynamic motion planning via learning reachability
estimators from RL policies,” IEEE Robotics and Automation Letters, Vol. 4, No. 4, 2019, pp. 4298–4305.

[16] Mellinger, D., and Kumar, V., “Minimum snap trajectory generation and control for quadrotors,” 2011 IEEE international
conference on robotics and automation, IEEE, 2011, pp. 2520–2525.

[17] Bry, A., Richter, C., Bachrach, A., and Roy, N., “Aggressive flight of fixed-wing and quadrotor aircraft in dense indoor
environments,” The International Journal of Robotics Research, Vol. 34, No. 7, 2015, pp. 969–1002.

[18] Stellato, B., Banjac, G., Goulart, P., Bemporad, A., and Boyd, S., “OSQP: An operator splitting solver for quadratic programs,”
Mathematical Programming Computation, Vol. 12, No. 4, 2020, pp. 637–672.

[19] Burke, D., Chapman, A., and Shames, I., “Generating minimum-snap quadrotor trajectories really fast,” 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), IEEE, 2020, pp. 1487–1492.

[20] Meng, L., Qing, S., and Jun, Z. Q., “UAV path re-planning based on improved bidirectional RRT algorithm in dynamic
environment,” 2017 3rd International Conference on Control, Automation and Robotics (ICCAR), IEEE, 2017, pp. 658–661.

[21] Lou, J., Yuksek, B., Inalhan, G., and Tsourdos, A., “An RRT* Based Method for Dynamic Mission Balancing for Urban Air
Mobility Under Uncertain Operational Conditions,” 2021 IEEE/AIAA 40th Digital Avionics Systems Conference (DASC), IEEE,
2021, pp. 1–10.

[22] Dong, Z., Chen, Z., Zhou, R., and Zhang, R., “A hybrid approach of virtual force and A* search algorithm for UAV path
re-planning,” 2011 6th IEEE Conference on Industrial Electronics and Applications, IEEE, 2011, pp. 1140–1145.

[23] Ng, A. Y., Russell, S. J., et al., “Algorithms for inverse reinforcement learning.” Icml, Vol. 1, 2000, p. 2.

16

[24] Sadhu, A. K., Shukla, S., Sortee, S., Ludhiyani, M., and Dasgupta, R., “Simultaneous Learning and Planning using Rapidly
Exploring Random Tree* and Reinforcement Learning,” 2021 International Conference on Unmanned Aircraft Systems (ICUAS),
IEEE, 2021, pp. 71–80.

[25] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O., “Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[26] Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P., “Trust region policy optimization,” International conference on
machine learning, PMLR, 2015, pp. 1889–1897.

[27] Yuksek, B., Umut Demirezen, M., Inalhan, G., and Tsourdos, A., “Cooperative Planning for an Unmanned Combat Aerial
Vehicle Fleet Using Reinforcement Learning,” Journal of Aerospace Information Systems, Vol. 18, No. 10, 2021, pp. 739–750.

[28] Hammersley, J., Monte carlo methods, Springer Science & Business Media, 2013.

[29] Chow, Y., Nachum, O., and Ghavamzadeh, M., “Path consistency learning in tsallis entropy regularized mdps,” International
conference on machine learning, PMLR, 2018, pp. 979–988.

[30] Pascanu, R., Mikolov, T., and Bengio, Y., “On the difficulty of training recurrent neural networks,” International conference on
machine learning, PMLR, 2013, pp. 1310–1318.

[31] Hochreiter, S., and Schmidhuber, J., “Long short-term memory,” Neural computation, Vol. 9, No. 8, 1997, pp. 1735–1780.

[32] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y., “Learning phrase
representations using RNN encoder-decoder for statistical machine translation,” arXiv preprint arXiv:1406.1078, 2014.

[33] Chen, J., Su, K., and Shen, S., “Real-time safe trajectory generation for quadrotor flight in cluttered environments,” 2015 IEEE
International Conference on Robotics and Biomimetics (ROBIO), IEEE, 2015, pp. 1678–1685.

[34] Gammell, J. D., Srinivasa, S. S., and Barfoot, T. D., “Informed RRT*: Optimal sampling-based path planning focused via direct
sampling of an admissible ellipsoidal heuristic,” 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems,
IEEE, 2014, pp. 2997–3004.

[35] Wu, J., Chen, X.-Y., Zhang, H., Xiong, L.-D., Lei, H., and Deng, S.-H., “Hyperparameter optimization for machine learning
models based on Bayesian optimization,” Journal of Electronic Science and Technology, Vol. 17, No. 1, 2019, pp. 26–40.

[36] Zhang, D., Ma, G., Deng, Z., Wang, Q., Zhang, G., and Zhou, W., “A self-adaptive gradient-based particle swarm optimization
algorithm with dynamic population topology,” Applied Soft Computing, Vol. 130, 2022, p. 109660.

[37] Wortsman, M., Ilharco, G., Gadre, S. Y., Roelofs, R., Gontĳo-Lopes, R., Morcos, A. S., Namkoong, H., Farhadi, A., Carmon,
Y., Kornblith, S., et al., “Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time,” International Conference on Machine Learning, PMLR, 2022, pp. 23965–23998.

17

	Introduction
	Related Works
	An Reinforcement Learning based approach for generating minimal snap trajectory
	Approach based on Generative adversarial imitation learning
	Conclusion and Future work

