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Abstract—Urban air mobility (UAM) is one of the most critical
research areas which combines vehicle technology, infrastructure,
communication, and air traffic management topics within its
identical and novel requirement set. Navigation system require-
ments have become much more important to perform safe opera-
tions in urban environments in which these systems are vulnera-
ble to cyber-attacks. Although the global navigation satellite sys-
tem (GNSS) is a state-of-the-art solution to obtain position, navi-
gation, and timing (PNT) information, it is necessary to design a
redundant and GNSS-independent navigation system to support
the localization process in GNSS-denied conditions. Recently,
Artificial intelligence (AI)-based visual navigation solutions are
widely used because of their robustness against challenging
conditions such as low-texture and low-illumination situations.
However, they have weak adaptability to new environments if the
size of the dataset is not sufficient to train and validate the system.
To address these problems, federated meta learning can help fast
adaptation to new operation conditions with small dataset, but
different visual sensor characteristics and adversarial attacks add
considerable complexity in utilizing federated meta learning for
navigation. Therefore, we proposed a robust-by-design Federated
Meta Learning based visual odometry algorithm to improve pose
estimation accuracy, dynamically adapt to various environments
by using differentiable meta models and tunning its architecture
to defense against cyber-attacks on the image data. In this
proposed method, multiple learning loops (inner-loop and outer-
loop) are dynamically generated. Each vehicle utilizes its collected
visual data in different flight conditions to train its own neural
network locally for a particular condition in the inner loops.
Then, vehicles collaboratively train a global model in the outer
loop which has generalizability across heterogeneous vehicles to
enable lifelong learning. The inner loop is used to train a task-
specific model based on local data, and the outer loop is to
extract common features from similar tasks and optimize meta-
model adaptability of similar tasks in navigation. Moreover, a
detection model is designed by utilizing key characteristics in
trained neural network model parameters to identify attacks.

Index Terms—Federated Learning, Meta Learning, Visual
Odometry, Navigation

I. INTRODUCTION

Utilization of urban air mobility (UAM) operations has
been increasing in recent years due to improvements in ve-
hicle technology, infrastructure and autonomy. All of these
improvements constitutes a basis for reliable, safe, effective
and sustainable operations even in challenging conditions in
urban canyons.

One of the key technologies for safe and effective UAM
applications is positioning, navigation and timing (PNT) so-
lutions to obtain the current vehicle location within an op-

erational environment with minimal error. Currently, GNSS
is state-of-the-art technology to obtain PNT information of
the vehicle, however it is quite vulnerable to multi-path
error within urban canyons and cyber-attacks such as GNSS-
spoofing and GNSS-jamming. Such attacks may result in
catastrophic accidents if there is no precaution against these
situations. Visual Odometry (VO) is one of the most effec-
tive techniques to complement the GNSS in which image
sequences are utilised to estimate the camera pose in the
presence of these abovementioned error sources. Moreover,
it is suitable to be integrated with different kind of sensors
such as inertial measurement unit (IMU) and light detection
and ranging (LIDAR) to mitigate the estimation error.

VO methods are quite promising for manned and unmanned
applications in indoor and GNSS-denied outdoor environ-
ments. Over the past 35 years, many researchers have studied
these methods to improve its estimation performance against
challenging operational conditions such as textureless envi-
ronments, low-illumination situations and motion blur due to
fast movement. To handle these problems, researchers have
focused on two approaches; a) Geometry-based VO, and b)
Learning-based VO. Geometry based VO applications, which
are further divided into two sub-categories as feature-based
methods and direct methods. This class of approaches are
well-defined and recognized as benchmarks for further im-
provements. However, to obtain a superior performance, they
require significant effort to calibrate and fine-tune the system
parameters. In addition, scale ambiguity is a fundamental
problem in monocular VO as the depth of the scene cannot be
calculated directly and this results in drift in pose estimation.

In the last decade, as a result of the improvements in
computation power, Artificial Intelligence (AI) has been suc-
cessfully applied for many computer vision tasks such as
object detection, segmentation, tracking, etc. This also has
enabled the application of AI, especially Deep Learning (DL),
on VO problems and prompted the researchers to create
suitable neural-network (NN) structures for VO applications.
It has been shown that DL-based VO algorithms are able
to learn effective and robust feature representation by using
large datasets without extensive tuning requirements unlike
in the geometry-based VO applications. This makes the DL
one of the most effective candidate to solve VO problems in
challenging conditions [1].

A multitude of methods have been proposed to address nav-



Fig. 1. General overview of the FL-VO.

igation problems in a learning-enabled framework. However,
these learning-based methods are not able to rapidly adapt to
new environments and/or conditions. Meta learning [2] is a
promising method to address the aforementioned issues by
leveraging previous experiences across a range of learning
tasks to significantly accelerate learning of new tasks.

In this study, we propose a Federated meta Learning-based
Visual Odometry (FLVO) to improve pose estimation accuracy
and rapidly adapt to various environments by using differ-
entiable models. The proposed method learns multiple meta
models for different groups of vehicles and rapidly obtains an
effective model for each vehicle based on the meta model and
local data, which also combined with Federated Learning (FL).
In this way, the training efficiency in learning new tasks can be
improved and the navigation algorithm becomes more adaptive
to the dynamic environment. Moreover, the proposed method
can leverage resources from different groups of vehicles. More
specifically, the proposed FLVO conducts two learning loops:
outer loop and inner loop. The outer loop is to train for
the meta model which runs on the FL server that can be a
roadside unit, a base station or a moving vehicle. It also uses
its experiences over many task contexts to gradually adjust
parameters of the meta model that governs the operation of
an inner loop. The inner loop is processed on vehicles, which
trains for the specific environment and condition. Normally,
the inner loop can adapt faster to new tasks through several
gradient updates with a small amount of sampling data [3].

The major contributions of this paper can be summarized
as follows:

• FLVO has high sample efficiency towards new learning
tasks, thus it enables vehicles to have the lifelong learning
capability and run the training process by using their own
data even with limited computation resources.

• FLVO dynamically generates multiple learning loops to

train meta visual odometry model which can speed up
the whole training process and improve pose estimation
accuracy.

• An robust-by-design federated meta learning framework
is proposed to achieve fast adaption to new environments
and conditions. Adversarial attacks can be detected by
learning multiple meta models and optimize a global
meta model generalizability across vehicles that operate
in different environments.

The rest of the paper is organized as follows. A brief
introduction to navigation, FL and meta Learning is given
in Section II. The problem formulation for navigation is
presented in Section III. The details of the proposed FLVO
are described in Section IV. Section V-C provides evaluation
results and performance analysis. Obtained results of FLVO
are discussed in Section VI. Finally, Section VII gives con-
cluding remarks and future works.

II. RELATED WORKS

As mentioned before, visual navigation has been studied
for longer than 3 decades and significant outcomes have
been obtained so far. From a general point of view, visual
navigation solutions in the literature could be divided into two
sub-groups as; a) Geometry-based methods and, b) Learning-
based methods. In order to have a clear overview about each
group and to emphasize the differencies of these approaches,
a literature survey is given in this section.

A. Geometry-based Visual Odometry

Over the past decades, significant developments and im-
provements have been demonstrated in both feature-based and
appearance-based methods. In [4], ORB-SLAM framework is
introduced which is a feature-based monocular simultaneous
localization and mapping (SLAM) algorithm that operates in



real-time in both indoor and outdoor environments. As an
extension study of [4], ORM-SLAM3 is given in [5] which
contains an open-source library for visual, visual-inertial and
multimap SLAM applications and suitable for monocular,
stereo, RGB-D cameras. Appearance-based approaches ob-
serve changes in intensity of pixel information instead of
performing feature detection and matching processes. So, these
methods skip the pre-computation step and directly use the
pixel intensity values received directly from the environment.
In [6], a direct monocular SLAM algorithm is proposed which
allows to build large scale and consistent maps. This study
is extended for stereo and omni-directional cameras in [7],
[8]. In [9], direct sparse odometry (DSO) is proposed which
combines benefits of direct methods with the flexibility of
sparse approaches.

B. Learning-based Navigation

When comparing to the geometry-based visual odometry
approaches, DL-based methods have promising results as they
are able to learn more effective and robust feature represen-
tation when sufficient size of dataset is provided. In addition,
they don’t require manual tuning and calibration process
which makes them more applicable in real-world conditions.
Although their pose estimation accuracy is not as high as
geometry-based approaches, they could learn further to adapt
to new environments thanks to their learning-enabled structure.

In [10], end-to-end, sequence-to-sequence probabilistic vi-
sual odometry (ESP-VO) is proposed for monocular camera
setting based on deep recurrent convolutional neural networks
(RCNN). In [11], Deep Depth, Deep Pose, and Deep Uncer-
tainty for Visual Odometry (D3VO) method is proposed for
monocular camera setting. This framework utilizes deep neural
networks on three levels for depth (with DepthNet [12]), pose
(with PoseNet [13]) and uncertainty estimation purposes. In
[14], DeepVO application is presented which is an end-to-end
framework applied for monocular VO and utilizes Recurrent
Convolutional Neural Network (RCNN) structure. Main aim
of the DeepVO is not only learning the feature representations
on the images by utilising Convolutional Neural Networks
(CNNs), but also modeling the sequential dynamics and re-
lations with the help of Recurrent Neural Networks (RNNs)
[14].

C. Federated Learning Applications in Navigation

Privacy and security issues have been become important
issues as the data size and number of users are increased.
Hence, several learning-based navigation approaches utilized
Federated Learning (FL) to reduce privacy and security risks.
McMahan et al. [15] first introduced FL which enables mul-
tiple vehicles collaboratively train a global model without
sharing vehicles’ local data. Kong et al. [16] proposed a
privacy-preserving aggregation for FL based navigation. Liu
et al. [17] developed a lifelong federated reinforcement learn-
ing architecture for navigation by using a knowledge fusion
algorithm and transfer learning. However, these learning-based
methods are not able to fast adapt to new environments,

because they need full retraining to learn updated model for
new environments, which is time-consuming. Furthermore,
they cannot handle heterogeneous vehicles that contain varied
data distributions.

In recent years, federated learning has been used for
odometry applications on autonomous vehicles because of
its unique properties such as minimum data sharing require-
ments and user privacy. In [18], it is proposed a learning-
based cooperative SLAM (FC-SLAM) approach for cloud
robotic applications to improve the performance of visual-
LIDAR SLAM. To do so, a federated deep learning algorithm
is developed for feature extraction and dynamic vocabulary
designation. It is shown that the proposed method has better
feature extraction perforance when compared to SIFT and
ORB under different illumination and viewpoint conditions.
In [19], a reconfigurable holographic surface (RHS)-aided
SLAM application is developed in which federated learning
method is utilised to enhance SLAM performance. Here, a
multi-vehicle SLAM protocol is proposed to regulate data
processing across multiple vehicles. Simulation results indicate
that the localization error is reduced when compared to non-
cooperative training schemes with the same hardware cost and
radiation power by utilising the federated learning architecture.

III. SYSTEM MODEL AND DESIGN GOALS

In this section, we describe the assumptions, system model
and identify design goals.

A. System model

We design a federated meta learning based visual navigation
framework for UAVs, as shown in Fig.1. Specifically, the
proposed FLVO utilizes a monocular camera to collect data
to train a neural network based visual odometry navigation
model. For ease of implementation, development and evalua-
tion process of the FLVO, following assumption is made which
is about the operation conditions;

Assumption 1: Monocular cameras are mounted on the aerial
vehicles horizontally. Aerial vehicles operate at low and fixed-
altitude and low-speed flight conditions.

Our proposed framework is based on a peer-to-peer FL
framework, which consists of a lead vehicle and a group of
vehicles which are defined below.

• Lead vehicle (Aggregation Server): The vehicle that has
sufficient computation and communication capacity can
be selected as a lead vehicle. The lead vehicle is re-
sponsible for updating a navigation model via 𝑇 training
iterations. At the beginning of iteration 𝑡, the lead vehicle
broadcasts the navigation model to all participating vehi-
cles. At the end of iteration 𝑡, the outer loop is executed
in the lead vehicle to conduct a global meta navigation
model by aggregating model updates from inner loop.

• Vehicles: At iteration 𝑡, each participating vehicle first
uses a camera to collect data in its local storage. Secondly,
each vehicle initializes its local navigation by using
the received model from the lead vehicle. Thirdly, each



vehicle utilizes its local data to obtain the updated naviga-
tion model by using Stochastic Gradient Descent (SGD).
Position and attitude data are exploited to calibrate the
predicted output. After the training process is completed,
all participating vehicles upload all their updated model
parameters to the lead vehicle.

Training an optimal navigation model is performed by mul-
tiple communication rounds and each communication round
𝑟 consists of the above steps. Communication rounds are
repeated until an optimal navigation model achieved at the
lead vehicle. Here, the assumption about the communication
system is given below.

Assumption 2: The connections between the lead vehicle
and participating vehicles are via wireless links with low
transmission delay and high bandwidth.

B. Design Goals

The goal of the proposed FLVO framework is to design a
robust-by-design and dynamic FL framework for navigation
to improve pose estimation accuracy, handle heterogeneous
vehicles and rapidly adapt to new environments.

• Robustness: Navigation system can be vulnerable to vari-
ous kinds of attacks, such as pixel attacks on images and
GPS spoofing. These attacks can corrupt the navigation
model training process. The proposed FLVO can detect
these attacks and remove them from model aggregation
in the lead vehicle to resist such attacks and improve
navigation system robustness.

• Adaptation: Vehicles operate in different environments
(i.e. city area, rural area, etc) and conditions (i.e. sunny,
rainy, cloudy, etc.). These environments are frequently
changing and the FLVO aims to fast adapt to new
environments by using multiple learning loops. Different
learning loops train different models that can be applied
to different environments. Moreover, FL framework sup-
ports flexible joining and leaving of participating vehicles.
The proposed FLVO also need to be adaptive to this
situation.

• Accuracy & Efficiency: Vehicles have varied data dis-
tributions. Training a navigation model over these data
distribution is difficult, which needs more training steps
and training samples. FLVO can extract common features
from multiple vehicles to improve model accuracy and
efficiency.

IV. A ROBUST-BY-DESIGN FEDERATED META LEARNING
BASED NAVIGATION SOLUTION

In this section, the proposed federated meta learning based
visual odometry navigation is introduced in details. It consists
of two parts: a) federated meta learning framework and, b)
visual odometry.

A. End-to-end Visual Odometry Architecture

In this study, each vehicle performs DeepVO framework
which has a Recurrent Convolutional Neural Network (RCNN)

structure to estimate the pose of the vehicle by using monoc-
ular camera image sequences. Here, a tensor is created by
stacking two consecutive images and fed into the RCNN
structure. The RCNN structure contains a CNN for feature
extraction and RNN for sequential learning. This is one
of the most important aspect of the RCNN, as it allows
simultaneous feature extraction and sequential modeling of the
visual odometry by using CNN and RNN structures. For more
information about the RCNN architecture and its application
in VO, readers may refer to [14].

The main aim of the end-to-end visual odometry is to
compute the conditional probability of the vehicle poses
Y = {𝑦0, 𝑦1, ..., 𝑦𝑡 } for a given sequence of camera images
X = {𝑥0, 𝑥1, ..., 𝑥𝑡 } in the time interval 𝑇 = [0, 1, ..., 𝑡].
Mathematical representation of this is given in Eq. (1).

𝑝(Y𝑡 |X𝑡 ) = 𝑝(𝑦0, 𝑦1, ..., 𝑦𝑡 |𝑥0, 𝑥1, ..., 𝑥𝑡 ) (1)

During the training process of the neural network structure,
optimal network parameters 𝜃∗ are calculated to minimize the
Euclidean distance between the ground truth pose (p𝑘 , 𝜓𝑘) and
estimated pose (p̂𝑘 , 𝜓̂𝑘) as shown in Eq. (2).

𝜃∗ = arg min
𝜃

1
𝑁

𝑁∑︁
𝑖=1

𝑡∑︁
𝑘=1

∥p̂𝑘 − p𝑘 ∥2
2 + 𝜅∥𝜓̂𝑘 − 𝜓𝑘 ∥2

2 (2)

where ∥.∥ is 2-norm, 𝜅 is a scale factor to provide balance
between position and orientation errors, and 𝑁 is number of
samples [14].

B. Federated meta learning for navigation

We combine FL with meta learning in the proposed FLVO.
It conducts two learning loops (inner loop and outer loop) to
train the navigation model. The outer loop is used to generate
meta model by extracting common features from inner loops,
while inner loop is based on the meta model from the outer
loop to fast train a personalized model [20].

Inner loop: Each vehicle uses its local dataset D𝑖 to train
an navigation model 𝑓 (𝜃𝑖 ,D𝑖) parameterized by 𝜃 [21]. The
target function of the inner loop is to minimize loss function
L𝑖𝑛.

𝜃∗𝑖 = arg min
𝜃𝑖∈𝑅

L𝑖𝑛 (D𝑖; 𝜃𝑖 , 𝑤) , (3)

where 𝜃∗ is the updated local model. 𝑤 is the parameters of
meta model in the outer loop. The loss function L𝑖𝑛 is defined
as [22]:

L𝑖𝑛 = 𝑓𝑖 (𝜃𝑖) +
𝜆

2
∥𝜃𝑖 − 𝑤∥2 , (4)

where 𝜆 is the weight of 𝑤 to the trained model.
FLVO optimizes this loss through SGD [23] to achieve 𝜃∗

𝑖
:

𝜃𝑡𝑖 = 𝜃𝑡−1
𝑖 − 𝛼▽L𝑖𝑛

(
𝜃𝑡−1
𝑖

)
,

s.t. 𝜃0
𝑖 = 𝑤, 𝑡 = 1, 2, 3, ...𝑇,

(5)



where 𝑡 is the current iteration in FL training and the total
number of iterations is 𝑇 . 𝜃0

𝑖
is the initial inner loop model in

the first iteration.
Outer loop: The outer loop is to conduct a meta-model 𝑤

that governs the operation of an inner loop. The loss function
of the outer loop is as follows:

L𝑜𝑢 =
1
𝑁

𝑁∑︁
𝑖=1

𝐹𝑖 (𝑤) ,

where 𝐹𝑖 (𝑤) = min
𝜃𝑖∈𝑅

{
𝑓𝑖 (𝜃𝑖) +

𝜆

2
∥𝜃𝑖 − 𝑤∥2

}
.

(6)

The outer loop to update the meta-model is as:

𝑤𝑡 = (1 − 𝛽) 𝑤𝑡−1 + 𝛽

𝑁∑︁
𝑖=1

𝜃𝑡−1
𝑖

|D𝑖 |
, (7)

where 𝛽 controls the weight of 𝑤 from the last iteration. The
data size of the vehicle also influences 𝑤 in the new iteration.

Detection model: We utilize a Variational AutoEncoder
(VAE) based detection model to identify attacks in the navi-
gation system and remove them from the FL training process.
VAE, an unsupervised learning model, copies its inputs to out-
puts by extracting features from low-dimensional embeddings
in the latent space. In VAE, essential features from inputs
can be kept, and irrelevant and noisy features are removed
[24], since attackers have large reconstruction errors. During
the FL training process, we compute a dynamic detection
threshold (the average value of all reconstruction errors) to
detect attacks in each communication round. Compared with
this threshold, the model updates with larger reconstruction
errors are identified as attackers. These attackers are removed
from the outer loops.

V. TRAINING AND EXPERIMENTATION RESULTS

A. Dataset and Simulation Environment

In supervised learning applications, it is crucial to have a
large and labeled dataset to train and test the agent properly.
However, there is a limited number of data within the open
literature that is collected from an aerial vehicle for learning-
based visual odometry purposes. Hence, in this study, a
RCNN model is typically initially trained for ground vehicle
applications by using KITTI dataset [25], and then transferred
to the aerial vehicle application and re-trained by using the
synthetic data.

As a synthetic environment, AirSim [26] is used which is an
open-source simulator for drones and cars. It contains sensor
models such as RGB cameras, LIDAR, inertial measurement
unit (IMU), barometer, GPS and magnetometer. It is possible
to simulate different weather and environmental conditions
(wind, rain, road wetness, leaves, etc.). Day time can also
be set which affects the light conditions and, of course, pose
estimation performance. In addition, it is possible to model the
noise on the RGB camera image which could be considered
to model the cyber-attacks on camera sensors.

TABLE I
AGENTS AND DATA SEQUENCES

Agents Training Sequences Validation Sequences

Agent-1 K00, K02, K08, K09 K03, K05
Agent-2 A23, A27, A29, A30 A24, A28

TABLE II
HYPERPARAMETERS FOR TRAINING

Parameters Value

Epochs 80
Batch Size 12
Learning Rate (LR) 0.001
Decay Rate 5e-6
LR Decay Factor 0.1
Sequence Length 7
Image Overlap 1

Agents and data sequences that are used for the training
phase are given in Table I. Here, "K" and "A" stand for the
sequence from KITTI dataset and AirSim, respectively.

B. Training of the RCNN Structure

Training process of the RCNN for KITTI and AirSim
datasets are performed by using the hyperparameters given
in Table II.

Training and validation loss values for KITTI and AirSim
environments are given in Fig.(2).

Fig. 2. Train and validation loss for KITTI and AirSim datasets.

C. Performance Evaluation

To evaluate the effeciveness of our federated learning
framework on visual odometry applications, several aggregated
agents are created by using different scaling factors 𝑘𝑛 as
shown in Eq. (8).

𝑘𝑛 = 𝑐
User-1 # of samples
User-2 # of samples

(8)



TABLE III
EXPERIMENT RESULTS OF AGENTS IN DIFFERENT ENVIRONMENTS.

Env-1
(K03)

Env-2
(K04)

Env-3
(A22)

Env-4
(A31)

𝑡𝑟𝑒𝑙 𝑟𝑟𝑒𝑙 𝑡𝑟𝑒𝑙 𝑟𝑟𝑒𝑙 𝑡𝑟𝑒𝑙 𝑟𝑟𝑒𝑙 𝑡𝑟𝑒𝑙 𝑟𝑟𝑒𝑙

Agent-1 5.44 0.035 7.95 0.024 85.95 0.6453 89.99 0.473
Agent-2 107.93 0.5817 107.89 0.1146 5.94 0.038 5.32 0.038

Agent-3 77.23 0.403 87.17 0.201 80.59 0.796 78.85 0.438
Agent-4 69.02 0.453 75.27 0.299 69.02 0.853 80.71 0.457
Agent-5 37.84 0.235 48.23 0.184 63.94 0.787 87.76 0.450
Agent-6 20.71 0.101 24.32 0.09 60.01 0.761 95.98 0.460

where 𝑐 is a scale factor to adjust the overall weight of the user
𝑛 ∈ {1, 2}. Here, 𝑐 is selected as 𝑐 = {1, 2, 3, 5} for analysis
purposes and this means relying more on the User-1 dataset
while creating the aggregated visual navigation agent.

After defining the federation policy of the algorithm, the
proposed FLVO framework is applied to obtain aggregated
visual odometry agents with different data scaling factors, 𝑐.
Description of the agents that are trained and tested in this
study are described below.

• Agent-1: VO agent trained by utilising the KITTI dataset.
• Agent-2: VO agent trained by utilsing the synthetic Air-

Sim dataset.
• Agent-3: Aggregated (Agent-1 + Agent-2) with 𝑐 = 1.
• Agent-4: Aggregated (Agent-1 + Agent-2) with 𝑐 = 2.
• Agent-5: Aggregated (Agent-1 + Agent-2) with 𝑐 = 3.
• Agent-6: Aggregated (Agent-1 + Agent-2) with 𝑐 = 5.

Fig. 3. Experiment results of agents in different environments.

VI. DISCUSSION

To evaluate the pose estimation performance of each agent,
translational root mean square error (RMSE) drift percentage
and rotational RMSE drift (𝑑𝑒𝑔/100𝑚) are used as evaluation
metrics. Results are given in Table III where 𝑡𝑟𝑒𝑙 is transla-
tional RMSE drift percentage and 𝑟𝑟𝑒𝑙 is rotational RMSE drift
in 𝑑𝑒𝑔/100𝑚. These results are also represented graphically
in Fig. 3.

• Agent-1, which is trained by utilizing KITTI dataset,
has better performance in KITTI sequences 03 and 04,
as expected. However, in AirSim-22 and AirSim-31 se-
quences, its translational RMSE drift is over 80%. A
similar situation can be observed for Agent-2 which is
trained by using AirSim dataset (i.e. better results in
AirSim sequences but increased RMSE drift in KITTI
sequences). The main reason of this result is operating

the agent in different environments other than it is trained
and validated.

• The proposed FLVO framework reduces translational
RMSE drift in both KITTI-03, 04 and AirSim-22 environ-
ments. For example, Agent-2 is trained in AirSim envi-
ronment and tested in KITTI-03 and KITTI-04 sequences.
Its translational RMSE drift is higher than 100% in KITTI
environment because any image data from KITTI dataset
is not used in its training phase of Agent-2. However,
as proposed in the FLVO framework, if the Agent-2 is
aggregated with the Agent-1 that is trained by using
KITTI dataset, aggregated agents (Agents 3, 4, 5, 6) have
lower translational RMSE drift in the KITTI environment
as a result of federation process. Similar situation could
be observed in AirSim sequence 22. Agent-1 has higher
translational RMSE drift in this sequence. However, pose
estimation error is reduced by using the proposed FLVO
framework as shown in Agents 3, 4, 5 and 6 in AirSim-22
sequence in Fig. 3.

• In the environment AirSim-31, translational RMSE drift
of the FLVO Agent-3 is lower than that of the Agent-
1. However, Agents 4, 5, and 6 have higher translational
RMSE drift in this environment. This might be as a result
of lack of sufficient number data collected from synthetic
AirSim environment.

• In rotational RMSE drift results in Table III, it is shown
that FLVO can reduce angular pose estimation error in
KITTI-03, KITTI-04 and AirSim-22 environments (see
aggregated agents). In AirSim-31 environment, although
there is not an improvement in angular RMSE drift, it is
observed that the angular RMSE drift remains constant
for the aggregated agents 3, 4, 5, and 6.

• Even though a decreasing trend is observed in trans-
lational RMSE drift by adjusting scaling factor 𝑐, it
should be further reduced by increasing the number of
agents and the size of the dataset. This helps to increase
robustness and adaptation capability of the FLVO in
various conditions.

VII. CONCLUSION

In this paper, we have proposed a novel FLVO framework
which can improve pose estimation accuracy in terms of
translational and rotational RMSE drift while reducing security
and privacy risks. It also enables fast adaptation to new
conditions thanks to the aggregation process of the local agents
which operate in different environments.

In addition, we have shown that it is possible to transfer
an end-to-end visual odometry agent that is trained by using
ground vehicle dataset (i.e. KITTI dataset) to an aerial vehi-
cle pose estimation problem for low-altitude and low-speed
operating conditions.

Dataset size is an important topic that should be considered
in both AI-based end-to-end visual odometry applications and
federated learning approaches. Although it is demonstrated
that federated learning could be applied for visual odometry
applications to aggregate the agents that are trained in different



environments, more data should be collected to improve the
translational and rotational pose estimation performance of the
aggregated agents.

In our future work, we will evaluate cyber-attack detection
performance of the proposed FLVO framework by utilizing
multiple learning loops. In addition, dataset size will be
expanded by utilizing real flight tests to increase the realm
of the training data and to improve the robustness of the
proposed federated learning based end-to-end visual odometry
algorithm.
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