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Abstract—This paper examines the distributed neighbor se-
lection problem for second-order semi-autonomous multi-agent 
networks. By inheriting the leader-to-follower reachability prop-
erty encoded in the eigenvector associated with the smallest 
eigenvalue of perturbed graph Laplacian, this paper shows that 
the convergence rate of a second-order semi-autonomous network 
can be enhanced on the reduced network constructed by this 
eigenvector. Moreover, a quantitative connection between the 
relative rate of change in velocity of neighboring agents and 
the corresponding entries in this eigenvector is also established, 
enabling a distributed neighbor selection algorithm for second-
order multi-agent networks. The main results in this paper extend 
our previous work of distributed neighbor selection algorithm 
design to multi-agent networks with more complicated agent-
level dynamics. 

Index Terms—Semi-autonomous network, leader-to-follower 
reachability, distributed neighbor selection, second-order system, 
Laplacian eigenvector. 

I. INTRODUCTION 

Reaching consensus via local information exchange is an 
essential routine for distributed algorithms implemented on 
multi-agent networks [1], [2], [3], [4], [5]. Here, a notable fact 
is that the convergence rate of the consensus process dramati-
cally signifes the performance of consensus-based distributed 
algorithms [6], [7]. It is well-known that the connectivity of the 
underlying communication networks, realized via each agent’s 
interactions with its nearest neighbors, plays a central role in 
the convergence rate of multi-agent networks [8], [9], [10], 
[11]. However, the convergence rate may vary considerably 
among all possible connected network confgurations [2], [9], 
[10], [11], [12], [13]. 

Recall that the consensus problem originates in the swarm-
ing phenomenon of natural species, such as a fock of birds 
and a school of fshes [8], [14]. It would be illuminating to 
note that, for instance, in focks of starlings, each bird interacts 
only with six to seven nearest neighbors rather than with all 
birds within a sensing radius [15]. The relevant observations 
motivate the development of distributed neighbor selection 
algorithms for frst-order multi-agent networks [16], [17], 
which is a convenient paradigm for convergence rate enhance-
ment via local edge reduction. Recently, an eigenvector-based 
distributed neighbor selection algorithm has been developed 
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to enhance the convergence rate of multi-agent networks [16], 
[17], [18]. The analytical procedures in this line of work 
typically deal with three issues: 

First, construct a reduced network that guarantees the 
leader-to-follower reachability via a specifc eigenvector of 
perturbed graph Laplacian; 

Second, analyze the enhancement of the convergence rate 
on this reduced network; 

Finally, explore local measurable information amongst 
agents for distributed construction of this reduced network. 

However, the existing results only consider multi-agent 
systems with frst-order local dynamics [16], [17]. For multi-
agent networks with specifc dynamics, the relevant results 
are still lacking, hindering the applicability of the proposed 
distributed neighbor selection framework. 

This paper is intended to extend previous results in [16] 
by examining the distributed neighbor selection problem 
of second-order semi-autonomous multi-agent networks. The 
main contributions of this paper are summarized as follows. 
By inheriting the leader-to-follower reachability encoded in 
the eigenvector associated with the smallest eigenvalue of 
the perturbed graph Laplacian, we show that the convergence 
rate of second-order semi-autonomous networks can be en-
hanced on the reduced network constructed by this eigenvector. 
Moreover, a quantitative connection between the states of 
neighboring agents and the entries of this eigenvector is also 
established, enabling the distributed implementation of the 
construction of the reduced network, which shall be referred to 
as distributed neighbor selection in our discussion. The main 
results in this paper extend our previous work to multi-agent 
networks with more complicated agent dynamics, promoting 
the application of our theoretical fndings to real-world multi-
agent networks. 

The remainder of this paper is organized as follows. The 
second-order semi-autonomous multi-agent network is intro-
duced in §2. Then, we formulate the problem and introduce 
the construction of the reduced network via the eigenvector 
of the perturbed graph Laplacian in §3. The convergence 
rate enhancement of the second-order semi-autonomous multi-
agent system on the reduced network is analyzed in §4, which 
is followed by the distributed neighbor selection algorithm 
for second-order semi-autonomous multi-agent networks pre-
sented in §5. The concluding remarks are provided in §6. 

II. SECOND-ORDER MULTI-AGENT NETWORK 

Consider a second-order semi-autonomous multi-agent net-
work with n ∈ N agents, denoted by an undirected G = 
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(V, E ,W ), edge set E ⊆ V × V and adjacency matrix 
W = [wij ] ∈ Rn×n satisfying wij = 1 if (j, i) ∈ E and 
wij = 0 otherwise. Each agent i ∈ V in G possesses a 
positional state xi(t) ∈ Rd and a state of velocity vi(t) ∈ Rd 

within a d-dimensional space where d ∈ N [19]. The neighbor 
set of agent i is denoted by Ni = {j ∈ V | (j, i) ∈ E}. The 
Laplacian of G is denoted by L = [lij ] ∈ Rn×n , whose entries nsatisfying that lij = j=1 wij for i = j and −wij for i ̸= j. 

In a semi-autonomous network G, m ∈ N (m < n) agents 
are designated as leader agents, leaving n − m agents as 
followers. Leader agents are in charge of receiving external 
inputs to steer the network towards a desired state. The 
dynamics of each agent i is governed by  

ẋ i(t) = vi(t) (1) 
v̇ i(t) = ui(t) 

where xi(t) ∈ Rd , vi(t) ∈ Rd , and ui(t) ∈ Rd for i ∈ V 
represent the position, longitudinal velocity and control input 
of agent i at time t, respectively. Each leader agent is subject 
to the infuence of an external input with a constant velocity 
whose dynamics are therefore dictated by 

E ẋ j (t) = v0 (2)E v̇ j (t) = 0 

E Ewhere xj (t) ∈ Rd and vj (t) ∈ Rd (j = m) represent the 
homogeneous position and velocity of the external inputs, 

E Erespectively, with xj (0) = 0. Moreover, we let vj (t) = v0 

represent a constant input in velocity that drives the evolution 
of the entire network. The input matrix B = [bil] ∈ Rn×m is 
defned such that bil = 1 if and only if agent i is a leader, and 
bil = 0 otherwise. 

Consider the following diffusive interaction protocol 
n 

ui(t) = −α wij (xi(t) − xj (t)) 
j=1 

n 
− β wij (vi(t) − vj (t)) 

j=1   
E− bil α xi(t) − xl (t) + β (vi(t) − v0) , i ∈ V, 

(3) 

where the coupling strength coeffcients α > 0 and β > 0 
are the same for all agents. The overall dynamics of the 
second-order multi-agent network under protocol (3) can be 
characterized by      

ẋ(t) x(t) xE (t)
= (H1 ⊗ Id) + (H2 ⊗ Id) , 

v̇(t) v(t) vE (t) 
(4)  ⊤ ⊤ ⊤where x(t) = x1 (t), . . . , x (t) , v(t) = n  ⊤ 

E⊤ E⊤⊤ ⊤ ⊤v1 (t), . . . , v (t) , xE (t) = x (t), . . . , x (t) ,n 1 m  ⊤ ⊤ ⊤∈ RmdvE (t) = v0 , . . . , v , and  
0    

0n×n In 0n×m 0n×mH1 = , H2 = ,−αLB −βLB αB βB 

where Id is the d × d identity matrix, 1m and 0n×m denote 
m × 1 vector and n × m matrix of all ones and all zeros, 
respectively, and 

LB = L + diag(B1m), (5) 

where LB is referred to as perturbed Laplacian matrix [17]. 
The second-order semi-autonomous networks (second-order 

SANs) under protocol (3) is said to achieve the leader-follower 
consensus if lim ||vi(t) − v0|| = 0 and lim ||xi(t) − 

t→+∞ t→+∞ 
Ex (t)|| = 0 for all i ∈ V, j ∈ m and some norm on Rd [20].j 

The Euclidean norm of a vector x ∈ Rn×n is designated by 
⊤||x|| = (x x) 2

1 
. 

We frst introduce the following lemma provided in [21] 
for the consensus in second-order fully-autonomous networks 
(second-order FANs), alternatively, the consensus in second-
order multi-agent networks without leaders. The overall dy-
namics of second-order FANs can be characterized by     

ẋ(t) x(t)
= (H0 ⊗ Id) , (6)

v̇(t) v(t) 

where   
0n×n In ∈ R2n×2nH0 = .−αL −βL 

Lemma 1. [21] Second-order FANs (6) can achieve consensus 
if and only if matrix H0 has exactly one zero eigenvalue 
of multiplicity of two and all the other eigenvalues have 
real parts. Moreover, if second-order consensus is reached, n
lim ||vi(t) − ξj vj (0)|| = 0 and lim ||xi(t) −j=1t→+∞ t→+∞ n n

ξj xj (0) − ξj vj (0)t|| = 0, where ξ is the unique j=1 j=1 
nonnegative left eigenvector of L with eigenvalue 0 satisfying 
ξ⊤1n = 1. 

Inspired by the proof of Lemma 1, if all the eigenvalues 
of H1 possess negative real parts, the states of agents will 
converge to the linear combination of the states of external 
inputs. Let ςij denote the eigenvalues of H1 where i ∈ n and 
j ∈ 2. We can order the eigenvalues of the perturbed Laplacian 
matrix LB as 0 < λ1 ≤ λ2 ≤ ... ≤ λn with corresponding 
normalized eigenvectors ϕ1, ϕ2, . . . , ϕ . Moreover, λ1 is an 
simple eigenvalue and ϕ1 can be chosen to be positive [17]. 
Then eigenvalues of H1 can be written as,  

−βλi + β2λ2 − 4αλi
ςi1 = 

i ,
2 

and  
−βλi − β2λ2 − 4αλiiςi2 = . (7)

2 

Note that all the eigenvalues of H1 have negative real parts if 
α, β > 0, implying that the second-order SAN (4) can achieve 
leader-follower consensus. 

III. EIGENVECTOR-BASED REDUCED NETWORK 

In this paper, we shall examine distributed neighbor selec-
tion algorithm design for second-order SANs. Following the 
paradigm of our previous work [17], the designed distributed 
neighbor selection algorithm needs to guarantee that one can 

1) construct a reduced network from a second-order SAN 
via perturbed Laplacian eigenvector, 

2) analyze the enhancement of convergence rate on the 
reduced network and 

2613 

Authorized licensed use limited to: Lancaster University. Downloaded on September 26,2024 at 14:53:45 UTC from IEEE Xplore. Restrictions apply. 



 
 

 

 

  
 

 

 
 

  
 

 
 

 
 

 
 

 
 

 
 

 

  

 
 

 

 
  

 

 
 

 

 

 
  

 
  

  
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 
 

 
 

 
 
 

 

 
 

 
 

 
 

 
 

 
 

  
 

 

 
 

  

  
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 

 
 

 
 

 
 

 
 

  
 

 
 

 
 

 
 

 
 

 

 

  
 

 
 

 
 

 
 

 
 

 

? ? 

0
.4
4

 
0
.3
6

 
0
.2
4

 
x
1E

 (t
) 

v
0

 

G 
: 

E 2
 (
t)

 
1 

2 
3 

4 
5 

6 

x v
0

 
0
.5
8

 
0
.4
3

 
0
.3
1

 

Fi
gu

re
 1

. 
O

ri
gi

na
l 

ne
tw

or
k.

 N
od

e 
3 

an
d 

no
de

 6
 a

re
 a

ge
nt

s 
in

fu
en

ce
d 

by
 

E
 

ex
te

rn
al

 i
np

ut
s 
x
j

 (
t)
(j

 =
1
, 2

) 
an

d 
v
0

. 

0
.4
4

 
0
.3
6

 
0
.2
4

 
x
E 1

 (
t)

 
v
0

 

Ḡ
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Figure 3. Velocity trajectories of agents in the second-order SAN in Figure 
1 (left side (a)-(c)) and in the FSN network in Figure 2 (right side (d)-(f)). 
The black dotted line in each panel represents the external input of velocity. 
The blue lines represent the trajectories of followers, while the orange lines 
represent leaders. The red dotted line represents the time of convergence. 

Figure 4. Position trajectories of agents in the second-order SAN in Figure 
1 (left side (a)-(c)) and in the FSN network in Figure 2 (right side (d)-(f)). 
The black dotted line in each panel represents the exteral input of position. 
The blue lines represent the trajectories of followers, while the orange lines 
represent leaders. The red dotted line represents the time of convergence. 

¯network G, while Figure 4 illustrates the convergence rate 
comparison of the positions of agents. 

The convergence rates of both velocity and position are 
signifcantly enhanced in the FSN network compared to the 
original network, demonstrating that the neighbor selection 
approach in Defnition 1 remains effective for second-order 
SANs. 

Next, we will show that convergence rate enhancement 
on the FSN network compared with the original second-
order SAN holds across various combinations of strength 
coeffcients and network topology. 

The theoretical guarantee of convergence rate enhancement 
for frst-order SANs is provided in [17]. Previous research 
on second-order SANs (4) indicates that the system’s con-
vergence rate is intricately infuenced by the combination of 
α, β, along with the smallest or largest non-zero eigenvalues 
of the perturbed Laplacian LB (represented as λ1 and λn, 
respectively). Specifcally, with fxed strength coeffcients α, β, 
the exponential convergence rate of second-order SANs can 
be determined by the real parts of specifc the eigenvalues of 
matrix H1 [23], 

c(λ1, λn) = min {c1(λ1), c2(λn)} , (8) 

where 

c1(λ1) = 
βλ1 

,
2  

c2(λn) = 
βλn − β2λ2 

n 

2 

− 4αλn 

=  
2α 

. 
β + β2 − 4α 1 

λn 

We present the following theorem to show that the FSN 
network generated from a second-order SAN will also enhance 
the convergence rate of (4). 

¯ ¯ ¯Theorem 1. Let G = (V, E ,W ) denote the FSN network of 
a second-order SAN G = (V, E ,W ) with the input matrix B. 
Then, 

λ1(LB (Ḡ)) ≥ λ1(LB (G)), (9) 

where equality holds only when all agents are leaders and 

λn(LB (Ḡ)) ≤λn(LB (G)), (10) 

where the inequality is strict when there exist no agent that is 
connected to all other agents. 

Remark 1. This theorem provides a theoretical guarantee of 
convergence rate enhancement on FSN networks compared 
with the original network. The equality in Theorem 1 holds 
only in irregular cases. Specifcally, equality holds for (9) 
when all agents are leaders. As for (10), equality will not 
hold when no agent is connected to all other agents, which is 
a common scenario since it is often assumed that each agent 
in the network is only connected to a subset of agents for 
distributed implementation. 

Note that c1(λ1) is a monotonically increasing function 
with respect to λ1, and c2(λn) is a monotonically decreasing 
function with respect to λn. Denote the smallest (largest) 
eigenvalue of LB (G) and LB (Ḡ) as λ1 (λn) and λ 

′ 
(λ 

′ 
),1 n 

respectively. By applying Theorem 1, and excluding the afore-
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 
′ 

mentioned irregular cases, one has that c1 

c2 λ 
′ 

> c2 (λn). Therefore, 
 λ > c1 (λ1) and1 

In the sequel, we present the defnition of relative tempo of 
velocity for second-order SANs, and show that the relative 
tempo of velocity is quantitively associated with ϕ1(LB ), 

n  
′ ′ ′ ′ 

c λ1, λ = min c1(λ1), c2(λ ) 
which allows utilizing local information to implement then n 

> min {c1(λ1), c2(λn)} 
= c (λ1, λn) . 

This implies that if the irregular cases in Remark 1 are 
excluded, the FSN network always converges faster than that 
on the original network, regardless of the strength coeffcients 
and the topology of the original network. Notably, the conver-
gence rate on the FSN network is never slower than that on 
the original network, even in those irregular cases. 

V. NEIGHBOR SELECTION VIA LOCAL INFORMATION 

In this section, we shall show how to employ the relative 
tempo of velocity of second-order consensus networks for 
distributed neighbor selection algorithm design. In essence, 
protocol (3) employs the deviation of neighboring agents in a 
multi-agent network to construct a local feedback control rule 
that achieves an aggregation of the states of all agents from 
a global perspective [10]. Here, we use a ratio-form quantity 
to capture the velocity deviation of neighboring agents and 
show how the proposed quantity can distinguish agents in a 
consensus network and subsequently enhance the convergence 
performance. 

Without loss of generality, let us regard  the homoge-⊤⊤ ⊤nous external inputs input⊤  as one u = u , u = x 

neighbor selection algorithm. 

Defnition 2 (Relative Tempo of Velocity). Let V1 ⊂ V and 
V2 ⊂ V be two subgroups of agents in multi-agent network 
(11), and h(V1) and h(V2) are selection matrices of V1 and 
V2, respectively. Then the relative tempo of velocity between 
agents in V1 and V2 is 

∥h(V1)χ̇(t)∥RT(V1, V2) = lim . (12) 
t→∞ ∥h(V2)χ̇(t)∥ 

We now provide a suffcient condition under which the 
convergence rate of the original second-order SAN (11) is 
uniquely determined by the smallest eigenvalue of perturbed 
Laplacian LB , to support the subsequent proof. 

Lemma 3. If the strength coeffcients α, β in second-order 
αSANs (11) satisfy that ≥ 1 , the convergence rate of second-β2 2 

order SANs is determined by the smallest eigenvalue of the 
perturbed Laplacian LB . 

Similar to the result for the frst-order SANs, the relative 
tempo of velocity in second-order SANs (11) is still encoded 
in ϕ1(LB ), but in a more complicated manner. 

Theorem 2. Let V1 ⊂ V and V2 ⊂ V be two subgroups 
of agents in the second-order SAN (11). Let h1 and h2 be 

v ⊤ the selection matrices of V1 and V2, respectively. Denote the´ t ⊤ ⊤v0 dt, v ⊤ ⊤ . Denote χ(t) = x⊤(t), v⊤(t), u . ordered eigenvalues of LB as 0 < λ1 < λ2 ≤ · · · ≤ λn with, u00 x v 

Then the overall dynamics (4) can be rewritten as corresponding normalized eigenvectors ϕ1, ϕ2, . . . , ϕ . Whenn 
the strength coeffcients α, β satisfy Lemma 3, the relative χ̇(t) = Mχ(t) (11) 
tempo of velocity between agents in V1 and V2 satisfes 

where matrix M is defned as 
0n×n In 0n×1 0n×1 

  ∥Θ1ϕ1(LB)∥RT(V1, V2) = . 
∥Θ2ϕ1(LB)∥ 

M = 
 

 
−αLB −βLB αB1m βB1m 

01×n 01×n 0 1 Remark 2. The relative tempo of velocity forms a quantitative . 
link in second-order SANs. Specifcally, the ratio of the rate of 01×n 01×n 0 0 
change of velocities between neighboring agents will converge 

To focus on the velocity of each agent, we introduce the to the ratio corresponding to the eigenvector ϕ1(LB ), and 
selection matrix. Let η = {i1, i2, ..., il}. For a set of agents 

⊂ V , the corresponding selection 
this convergence of ratio occurs signifcantly earlier than the 
convergence of the states of position and velocity. {vi1 , vi2 , . . . , vil }

matrix h(Φ) is referred to as 
Φ = 

We now provide an example to illustrate the quantitative 

h(Φ) = h(η) = 

  

 
link provided in Theorem 2. 

Example 3. Consider the following quantity of velocity ⊗ Id, 

01×n ei1 01×2 

01×n ei2 01×2 
. .01×n . 01×2 

 
||v̇i(t)||01×n eil 01×2 gij = , i ∈ V, j ∈ Ni, (13)
||v̇j (t)||where eil represents the il-th row of the identity matrix In. 

which satisfes limt→∞ gij (t) = RT(i, j). We now examine To distinguish different set of agents, we have defned that 
the quantitative link of relative tempo and ϕ1(LB ) in Example {i1, i2, ..., il}, hk = h(ηk), k ∈ N and Θk⊤⊤ ⊤ 

= Θ(ηk) == 
2. The trajectories of gij (t) for i = 5 and j ∈ {3, 4, 6} are⊤ei1 

for set Vk. 
ηk 

shown in Figure 5. The steady states of gij(t) are archived Here, we are primarily concerned with the relative tempo of 
at t = 10, when g53(10) = 1.1627, g54(10) = 0.8079 andthe agents’ velocities vi(t) ∈ Rd (will be formally defned in 
g56(10) = 1.4969. Meanwhile, one has ϕ1(LB )53 = 1.1643,Defnition 2). Therefore, the state vector of agents’ velocities 
ϕ1(LB )54 = 0.8089 and ϕ1(LB )56 = 1.4884.in Φ selected by h(Φ) can thus be represented by 

, e , . . . , ei2 il 

Examining the convergence rate of velocities in the original ⊤ ⊤ ⊤ ⊤ network shown in Figure 3 and that of gij (t) in Figure 5,(t), (t), (t)h(Φ)χ(t) = v v . . . v .i1 i2 il 
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Figure 5. Trajectories of gij (t) for agent i = 3 and its neighbors j ∈ 
{4, 5, 6} in second-order SAN shown in Example 2. 

one observes that the second-order SAN achieves an "ordered" 
state characterized by the relative tempo of velocity, prior to 
the fnal consensus time. 

Up to this point, we have demonstrated that in second-order 
SANs (11), if the strength coeffcients satisfy the condition 
in Lemma 3, the derivative of the agents’ velocities will 
comply with a relationship with ϕ1(LB ). This quantitative 
link has enabled us to develop a distributed algorithm that 
leverages local information, instead of global information of 
a second-order SAN, for neighbor selection to optimize the 
information fow in the interaction network, thereby enhancing 
convergence performance. 

In the spirit of the relative tempo of velocity, it is instinctive 
to examine the evolution of a consensus network when agents 
choose to be directly infuenced only by a certain group 
of neighbors. We shall subsequently introduce the formal 
defnition for the “Follow the Slower Neighbor” network via 
relative tempo in (12) as follows. 

¯ ¯ ¯Defnition 3 (FSN Network). Let G = (V, E ,W ) denote the 
FSN network of the second-order SANs (4). Then the FSN 

¯network G satisfes that w̄ = [w̄ ij ] ∈ Rn×n where w̄ ij = wij 

if RT({i} , {j}) ≥ 1 and w̄ ij = 0 if RT({i} , {j}) < 1. 

In an FSN network, each agent i always follows those 
neighbors whose rates of change in velocities are slower than i. 
Therefore, according to the relative tempo theorem, the tempo 
network for a second-order SAN can actually be constructed 
by each agent in a distributed and data-driven fashion without 
global topology. 

VI. CONCLUSION 

This paper addresses the distributed neighbor selection prob-
lem for second-order SANs. In this direction, we have applied 
the relative tempo theory to enhance the convergence rate of 
second-order SANs. A detailed analysis has been performed to 
explore the quantitative connection between the entries of the 
perturbed Laplacian eigenvector and the relative rate of change 
in velocity (relative tempo of velocity) of agents with second-
order dynamics. Moreover, a suffcient condition has been de-
rived to ensure this elegant quantitative connection, and along 
the way, a data-driven distributed neighbor selection algorithm 

1.4969 

1.1627 

0.8079 

5 10 15 20 25 30 35 40 45 50 

has been proposed using the relative tempo of velocity between 
each agent and its neighbors, and theoretical guarantees of 
convergence rate enhancement of second-order SANs on the 
corresponding FSN networks have been established. 
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