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Abstract—This paper examines the distributed neighbor se-
lection problem for second-order semi-autonomous multi-agent
networks. By inheriting the leader-to-follower reachability prop-
erty encoded in the eigenvector associated with the smallest
eigenvalue of perturbed graph Laplacian, this paper shows that
the convergence rate of a second-order semi-autonomous network
can be enhanced on the reduced network constructed by this
eigenvector. Moreover, a quantitative connection between the
relative rate of change in velocity of neighboring agents and
the corresponding entries in this eigenvector is also established,
enabling a distributed neighbor selection algorithm for second-
order multi-agent networks. The main results in this paper extend
our previous work of distributed neighbor selection algorithm
design to multi-agent networks with more complicated agent-
level dynamics.

Index Terms—Semi-autonomous network, leader-to-follower
reachability, distributed neighbor selection, second-order system,
Laplacian eigenvector.

I. INTRODUCTION

Reaching consensus via local information exchange is an
essential routine for distributed algorithms implemented on
multi-agent networks [1], [2], [3], [4], [5]. Here, a notable fact
is that the convergence rate of the consensus process dramati-
cally signifies the performance of consensus-based distributed
algorithms [6], [7]. It is well-known that the connectivity of the
underlying communication networks, realized via each agent’s
interactions with its nearest neighbors, plays a central role in
the convergence rate of multi-agent networks [8], [9], [10],
[11]. However, the convergence rate may vary considerably
among all possible connected network configurations [2], [9],
[10], [11], [12], [13].

Recall that the consensus problem originates in the swarm-
ing phenomenon of natural species, such as a flock of birds
and a school of fishes [8], [14]. It would be illuminating to
note that, for instance, in flocks of starlings, each bird interacts
only with six to seven nearest neighbors rather than with all
birds within a sensing radius [15]. The relevant observations
motivate the development of distributed neighbor selection
algorithms for first-order multi-agent networks [16], [17],
which is a convenient paradigm for convergence rate enhance-
ment via local edge reduction. Recently, an eigenvector-based
distributed neighbor selection algorithm has been developed
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to enhance the convergence rate of multi-agent networks [16],
[17], [18]. The analytical procedures in this line of work
typically deal with three issues:

First, construct a reduced network that guarantees the
leader-to-follower reachability via a specific eigenvector of
perturbed graph Laplacian;

Second, analyze the enhancement of the convergence rate
on this reduced network;

Finally, explore local measurable information amongst
agents for distributed construction of this reduced network.

However, the existing results only consider multi-agent
systems with first-order local dynamics [16], [17]. For multi-
agent networks with specific dynamics, the relevant results
are still lacking, hindering the applicability of the proposed
distributed neighbor selection framework.

This paper is intended to extend previous results in [16]
by examining the distributed neighbor selection problem
of second-order semi-autonomous multi-agent networks. The
main contributions of this paper are summarized as follows.
By inheriting the leader-to-follower reachability encoded in
the eigenvector associated with the smallest eigenvalue of
the perturbed graph Laplacian, we show that the convergence
rate of second-order semi-autonomous networks can be en-
hanced on the reduced network constructed by this eigenvector.
Moreover, a quantitative connection between the states of
neighboring agents and the entries of this eigenvector is also
established, enabling the distributed implementation of the
construction of the reduced network, which shall be referred to
as distributed neighbor selection in our discussion. The main
results in this paper extend our previous work to multi-agent
networks with more complicated agent dynamics, promoting
the application of our theoretical findings to real-world multi-
agent networks.

The remainder of this paper is organized as follows. The
second-order semi-autonomous multi-agent network is intro-
duced in §2. Then, we formulate the problem and introduce
the construction of the reduced network via the eigenvector
of the perturbed graph Laplacian in §3. The convergence
rate enhancement of the second-order semi-autonomous multi-
agent system on the reduced network is analyzed in §4, which
is followed by the distributed neighbor selection algorithm
for second-order semi-autonomous multi-agent networks pre-
sented in §5. The concluding remarks are provided in §6.

II. SECOND-ORDER MULTI-AGENT NETWORK

Consider a second-order semi-autonomous multi-agent net-
work with n € N agents, denoted by an undirected G =
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(V,E, W), edge set £ C V x V and adjacency matrix
W = |w;;] € R™™™ satisfying w;; = 1 if (j,i) € € and
w;; = 0 otherwise. Each agent i € V in G possesses a
positional state x;(t) € R? and a state of velocity v;(t) € R?
within a d-dimensional space where d € N [19]. The neighbor
set of agent ¢ is denoted by N; = {j € V|(j,7) € £}. The
Laplacian of G is denoted by L = [I;;] € R"*™, whose entries
satisfying that l;; = 3", wy; for i = j and —w; for i # j.

In a semi-autonomous network G, m € N (m < n) agents
are designated as leader agents, leaving n — m agents as
followers. Leader agents are in charge of receiving external
inputs to steer the network towards a desired state. The
dynamics of each agent ¢ is governed by

{s&:i(t) = v;(t)

where x;(t) € R%, v;(t) € RY, and w;(t) € RY fori € V
represent the position, longitudinal velocity and control input
of agent ¢ at time ¢, respectively. Each leader agent is subject
to the influence of an external input with a constant velocity
whose dynamics are therefore dictated by

{”’Z (1) = v @

05 (t) =0

(1

where x¥(t) € R? and v¥(t) € R?(j = m) represent the
homogeneous position and velocity of the external inputs,
respectively, with :cf (0) = 0. Moreover, we let 'vf (t) = vo
represent a constant input in velocity that drives the evolution
of the entire network. The input matrix B = [b;] € R"*™ is
defined such that b;; = 1 if and only if agent ¢ is a leader, and
b;; = 0 otherwise.
Consider the following diffusive interaction protocol

ui(t) = —Oézwij (aci(t) — :cj(t))

8wy (0i(t) = v, (1)

— by [Oé (:L'l(t) - wF(t)) +p (’Ui(t) — 'Uo)} S 1EV,
3)
where the coupling strength coefficients o« > 0 and 5 > 0
are the same for all agents. The overall dynamics of the
second-order multi-agent network under protocol (3) can be
characterized by

[ 3};8 ] = (H1 ® I4) [ 2:8 ] + (H2 ® Ig) { :Eg; } ;
“)
where  x(t) = (] (t),..., 2, (1) ", w(t) =
(0l ol @) T, 22 = (2870, 2E 1)
vE(t) = (vg,...,v)) "€ R™, and
m=| S || O ).

where I; is the d x d identity matrix, 1,, and 0,,x.,, denote
m X 1 vector and n X m matrix of all ones and all zeros,
respectively, and

Lp = L + diag(B1,,), 5)

where L is referred to as perturbed Laplacian matrix [17].
The second-order semi-autonomous networks (second-order
SANSs) under protocol (3) is said to achieve the leader-follower
consensus if lim ||v;(¢t) — vo|| = 0 and lim ||a;(¢) —
t—+oo t——+oo

iL’]E(t)H =0 foralli €V, j € m and some norm on R? [20].
The Euclidean norm of a vector & € R™*" is designated by
2| = (@7 2)%.

We first introduce the following lemma provided in [21]
for the consensus in second-order fully-autonomous networks
(second-order FANS), alternatively, the consensus in second-
order multi-agent networks without leaders. The overall dy-
namics of second-order FANs can be characterized by

) men] ] o

where

I,

—BL
Lemma 1. [21] Second-order FANs (6) can achieve consensus
if and only if matrix Hy has exactly one zero eigenvalue
of multiplicity of two and all the other eigenvalues have
real parts. Moreover, if second-order consensus is reached,

tim_[oi(t) — Sy &0,0)ll = 0 and T ||ai(t) -

t—+o0 2
> =1 &55(0) = 377 &0 (0)t]| = O, where & is the unique
nonnegative left eigenvector of L with eigenvalue 0 satisfying
€1, =1

HO — |: O’H.XTL

2nx2n
— ol ] eR .

Inspired by the proof of Lemma 1, if all the eigenvalues
of H; possess negative real parts, the states of agents will
converge to the linear combination of the states of external
inputs. Let ¢;; denote the eigenvalues of H; where 7 € n and
J € 2. We can order the eigenvalues of the perturbed Laplacian
matrix Lp as 0 < A\; < Ay < ... < )\, with corresponding
normalized eigenvectors ¢y, @, ..., @,. Moreover, A; is a
simple eigenvalue and ¢; can be chosen to be positive [17].
Then eigenvalues of H; can be written as,

—BN\; + \/52)\? —4da);
2 b)

Gi1 =

and

7/3)\1 — \/ﬂQ)\? — 40(Al

5 (7

Note that all the eigenvalues of H; have negative real parts if
a, > 0, implying that the second-order SAN (4) can achieve
leader-follower consensus.

Gi2 =

III. EIGENVECTOR-BASED REDUCED NETWORK

In this paper, we shall examine distributed neighbor selec-
tion algorithm design for second-order SANs. Following the
paradigm of our previous work [17], the designed distributed
neighbor selection algorithm needs to guarantee that one can

1) construct a reduced network from a second-order SAN
via perturbed Laplacian eigenvector,

2) analyze the enhancement of convergence rate on the
reduced network and
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Figure 3. Velocity trajectories of agents in the second-order SAN in Figure
1 (left side (a)-(c)) and in the FSN network in Figure 2 (right side (d)-(f)).
The black dotted line in each panel represents the external input of velocity.
The blue lines represent the trajectories of followers, while the orange lines
represent leaders. The red dotted line represents the time of convergence.
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Figure 4. Position trajectories of agents in the second-order SAN in Figure
1 (left side (a)-(c)) and in the FSN network in Figure 2 (right side (d)-(f)).
The black dotted line in each panel represents the exteral input of position.
The blue lines represent the trajectories of followers, while the orange lines
represent leaders. The red dotted line represents the time of convergence.

network G, while Figure 4 illustrates the convergence rate
comparison of the positions of agents.

The convergence rates of both velocity and position are
significantly enhanced in the FSN network compared to the
original network, demonstrating that the neighbor selection
approach in Definition 1 remains effective for second-order
SANSs.

Next, we will show that convergence rate enhancement
on the FSN network compared with the original second-
order SAN holds across various combinations of strength
coefficients and network topology.

The theoretical guarantee of convergence rate enhancement
for first-order SANs is provided in [17]. Previous research
on second-order SANs (4) indicates that the system’s con-
vergence rate is intricately influenced by the combination of
«, 3, along with the smallest or largest non-zero eigenvalues
of the perturbed Laplacian Lp (represented as Ay and A,,
respectively). Specifically, with fixed strength coefficients «, 3,
the exponential convergence rate of second-order SANs can
be determined by the real parts of specific the eigenvalues of
matrix H; [23],

c(A, An) = min {c1 (A1), c2(An)}, (8)
where
A
ci(A) = %,
es(0n) BAn — \/B2A2 — daA,
2\\n ) = 9
2

N

We present the following theorem to show that the FSN
network generated from a second-order SAN will also enhance
the convergence rate of (4).

denote the FSN network of

Theorem 1. Let G = (V,E, W)
E, W) with the input matrix B.

a second-order SAN G = (V
Then,

M(LB(9) = M(Lp(9)), 9

where equality holds only when all agents are leaders and

A(LB(9)) <An(LB(9)), (10)

where the inequality is strict when there exist no agent that is
connected to all other agents.

Remark 1. This theorem provides a theoretical guarantee of
convergence rate enhancement on FSN networks compared
with the original network. The equality in Theorem 1 holds
only in irregular cases. Specifically, equality holds for (9)
when all agents are leaders. As for (10), equality will not
hold when no agent is connected to all other agents, which is
a common scenario since it is often assumed that each agent
in the network is only connected to a subset of agents for
distributed implementation.

Note that ¢;(A1) is a monotonically increasing function
with respect to A1, and ca(A,,) is a monotonically decreasing
function with respect to \,. Denote the smallest (largest)
eigenvalue of Lp(G) and Lp(G) as A (\,) and A} (\)),
respectively. By applying Theorem 1, and excluding the afore-
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mentioned irregular cases, one has that ¢; ()\/1) > ¢1 (A1) and

Co (A;) > ¢o (An). Therefore,
o)

c ()\/1, )\ln) = min{
> min {¢g (A ) ( )}
=c(A1,\n)-

This implies that if the irregular cases in Remark 1 are
excluded, the FSN network always converges faster than that
on the original network, regardless of the strength coefficients
and the topology of the original network. Notably, the conver-
gence rate on the FSN network is never slower than that on
the original network, even in those irregular cases.

V. NEIGHBOR SELECTION VIA LOCAL INFORMATION

In this section, we shall show how to employ the relative
tempo of velocity of second-order consensus networks for
distributed neighbor selection algorithm design. In essence,
protocol (3) employs the deviation of neighboring agents in a
multi-agent network to construct a local feedback control rule
that achieves an aggregation of the states of all agents from
a global perspective [10]. Here, we use a ratio-form quantity
to capture the velocity deviation of neighboring agents and
show how the proposed quantity can distinguish agents in a
consensus network and subsequently enhance the convergence

performance.
Without loss of generality, let us regard the homoge-
. . T
nous external inputs as one input u = (uI,uI ) =

T
(fg vOTdt,'vOT) . Denote x(t) = (mT(t),vT(t),uI,uI)T.
Then the overall dynamics (4) can be rewritten as

X(t) = Mx(t) (11)
where matrix M is defined as
On><n In 0n><1 0n><1
M — —OéLB —ﬁLB aBlm ﬁBlm
N O1><n 01><TL 0 1
len 01><n 0 0

To focus on the velocity of each agent, we introduce the
selection matrix. Let n = {41,142, ...,4;}. For a set of agents
® = {vy,Viy,..-,0;,+ C V, the corresponding selection
matrix h(®) is referred to as

O1xn €, O1x2
O1xn €, Oix2

h®) = h(n) = . ® Ig,
O1xn 01x2

Oixn €; O1x2

where e;, represents the 7;-th row of the identity matrix I,,.
To distinguish different set of agents, we have defined that

Nk = {ilai%...,il}, hk = h(’l]k) k € N and ®k = @(nk) =
[el, el, ..., el ] forsetVy.

Here, we are primarily concerned with the relative tempo of
the agents’ velocities v;(t) € R? (will be formally defined in
Definition 2). Therefore, the state vector of agents’ velocities
in @ selected by h(®) can thus be represented by

R@)x(t) = (vl (1), vi(t), ... vl())".

In the sequel, we present the definition of relative tempo of
velocity for second-order SANs, and show that the relative
tempo of velocity is quantitively associated with ¢,(Lp),
which allows utilizing local information to implement the
neighbor selection algorithm.

Definition 2 (Relative Tempo of Velocity). Let V; C V and
Vo C V be two subgroups of agents in multi-agent network
(11), and h(Vy) and h(V2) are selection matrices of V; and
Vs, respectively. Then the relative tempo of velocity between
agents in V; and Vs is

[ROV)x @)l
oo |A(V2)x (t)]|

We now provide a sufficient condition under which the
convergence rate of the original second-order SAN (11) is
uniquely determined by the smallest eigenvalue of perturbed
Laplacian Lp, to support the subsequent proof.

RT(V1,V,) = 1 12)

Lemma 3. [f the strength coeﬁ?cients a, B in second-order
SANs (11) satisfy that a > 1 5, the convergence rate of second-
order SANs is determmed by the smallest eigenvalue of the

perturbed Laplacian Lp.

Similar to the result for the first-order SANSs, the relative
tempo of velocity in second-order SANs (11) is still encoded
in ¢;(Lp), but in a more complicated manner.

Theorem 2. Let Vi C V and Vo C V be two subgroups
of agents in the second-order SAN (11). Let hy and hy be
the selection matrices of V1 and Vs, respectively. Denote the
ordered eigenvalues of Lp as 0 < A\ < Ao < -+ <\, with
corresponding normalized eigenvectors ¢, P, ..., @,,. When
the strength coefficients «, 8 satisfy Lemma 3, the relative
tempo of velocity between agents in V, and Vs satisfies

10161 (Ls)l|
18261 (Lo

Remark 2. The relative tempo of velocity forms a quantitative
link in second-order SANs. Specifically, the ratio of the rate of
change of velocities between neighboring agents will converge
to the ratio corresponding to the eigenvector ¢,(Lp), and
this convergence of ratio occurs significantly earlier than the
convergence of the states of position and velocity.

RT(V1,V,) =

We now provide an example to illustrate the quantitative
link provided in Theorem 2.

Example 3. Consider the following quantity of velocity

0]
RO
which satisfies lim;_, ¢;;(t) = RT(4, 7). We now examine
the quantitative link of relative tempo and ¢, (L) in Example
2. The trajectories of g¢;;(t) for ¢ = 5 and j € {3,4,6} are
shown in Figure 5. The steady states of gij(¢) are archived
at t = 10, when g¢53(10) = 1.1627, g54(10) = 0.8079 and
g56(10) = 1.4969. Meanwhile, one has ¢, (Lp)s3 = 1.1643,
¢1(LB)54 = 0.8089 and ¢1 (LB)56 = 1.4884.
Examining the convergence rate of velocities in the original
network shown in Figure 3 and that of g;;(¢) in Figure 5,

i€V, jeN,

13)
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Figure 5. Trajectories of g;;(t) for agent ¢ = 3 and its neighbors j €
{4,5,6} in second-order SAN shown in Example 2.

one observes that the second-order SAN achieves an "ordered"
state characterized by the relative tempo of velocity, prior to
the final consensus time.

Up to this point, we have demonstrated that in second-order
SANs (11), if the strength coefficients satisfy the condition
in Lemma 3, the derivative of the agents’ velocities will
comply with a relationship with ¢1(Lp). This quantitative
link has enabled us to develop a distributed algorithm that
leverages local information, instead of global information of
a second-order SAN, for neighbor selection to optimize the
information flow in the interaction network, thereby enhancing
convergence performance.

In the spirit of the relative tempo of velocity, it is instinctive
to examine the evolution of a consensus network when agents
choose to be directly influenced only by a certain group
of neighbors. We shall subsequently introduce the formal
definition for the “Follow the Slower Neighbor” network via
relative tempo in (12) as follows.

Definition 3 (FSN Network). Let G = (V, &£, W) denote the
FSN network of the second-order SANs (4). Then the FSN
network G satisfies that w = [w;;] € R"*" where w;; = w;;
if RT({i},{j}) > 1 and w;; = 0 if RT({i}, {j}) < L.

In an FSN network, each agent ¢ always follows those
neighbors whose rates of change in velocities are slower than 1.
Therefore, according to the relative tempo theorem, the tempo
network for a second-order SAN can actually be constructed
by each agent in a distributed and data-driven fashion without
global topology.

VI. CONCLUSION

This paper addresses the distributed neighbor selection prob-
lem for second-order SANSs. In this direction, we have applied
the relative tempo theory to enhance the convergence rate of
second-order SANS. A detailed analysis has been performed to
explore the quantitative connection between the entries of the

has been proposed using the relative tempo of velocity between
each agent and its neighbors, and theoretical guarantees of
convergence rate enhancement of second-order SANs on the
corresponding FSN networks have been established.
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