Introduction

Many modern examples of autonomous systems (such
as autonomous cars and aerial vehicles) are exam-
ples of cyber-physical systems with multiple interact-
Ing components.

Increasingly, components employing machine learning
(ML) are being deployed. For example, neural net-
works are currently being used in the design of both
controllers and perception modules.

These developments present serious challenges be-
cause trustworthy autonomy demands strong guaran-
tees about the behaviour of the overall autonomous
system, which are difficult to obtain when neural net-
works are involved.

Properties of autonomous systems

Some common requirements for autonomous systems
feature properties that fall under the definition of
safety (e.g that vehicles will not collide with obsta-
cles) and liveness (e.g. that a vehicle must attain a
certain state), or a combination thereof (e.g. that a
vehicle must progress towards its goal while avoiding
all obstacles: so-called reach-avoid properties).

Safety and liveness requirements can be specified pre-
cisely and formally using a temporal logic.

It is a practical challenge to verify properties of au-
tonomous systems composed of many components
when the specification for some of the components is
not known precisely.

Security properties

Security properties are often stated in terms of
safety and liveness properties.

More recent work by Clarkson and Schneider intro-
duced so-called hyperproperties, along with new
ogics which can capture a wider class of security
oroperties (e.g. secure information flow) than is
possible using standard safety and liveness proper-
ties.

Trustworthy Autonomous Systems
Andrew Sogokon, Neeraj Suri (Pl) EP/V026763/1

School of Computing and Communications, Lancaster University

Figure: Desirable property of autonomous vehicles: collision freedom.

Formal verification

Formal verification provides a mathematically rig-
orous way of proving properties about autonomous
systems and gives the strongest possible guaran-
tees about their behaviour. However, in prac-
tice, applying formal verification in this domain
is fraught with many difficulties.

One of the challenges is that performing verifica-
tion as part of a system's design relies on mak-
ing assumptions about its operating environment
(which in practice is often uncertain).

Runtime monitoring

As an alternative to performing verification offline
during the design, one approach is to monitor the be-
haviour of the system as it is running and determine if
it is about to violate any of its requirements on the fly
(and switching into a different mode in order to avoid
this). The so-called Simplex architecture in principle
enables safe use of unverified controllers. In order to
make the Simplex approach trustworthy, one requires
strong (formal) guarantees about the behaviour of
the decision module which governs the switching.

Runtime monitoring and verification (the Simplex approach)

Decision module

ML controller
(potentially unsafe)

\
Verified controller —I
(safe)

Plant

control input

SjusWwainsesw JOSUSS

Figure: Simplex Architecture.

Engineering and
Physical Sciences
Research Council

Stability

Stability of motion (which is an example of a hyper-
property) is often a critically important requirement
in cyber-physical systems. |f the system becomes un-
stable, e.g. due to failure or malfunction of some of
its components (which may happen as a result of an
adversarial attack), the behaviour of the overall sys-
tem can become dangerous.

A formal (sufficient) criterion for establishing stabil-
ity properties in control involves the use of so-called
Lyapunov functions.

The classic sufficient criterion for stability was gener-
alised by R. Bellman in 1962 in what he termed vector
Lyapunov functions. The biggest practical bottleneck
lies in finding the Lyapunov function (whether vector
or scalar) for a given system.

Recent methods employing neural networks in order
to search for Lyapunov functions could in principle
be applied to search for Bellman's extended class of
vector functions.

References

[1] Danbing Seto and et al. Krogh.
The Simplex architecture for safe online control system

upgrades.
In ACC'98, volume 6, pages 3504—-3508, 1998.

2] Richard Bellman.
Vector Lyapunov functions.
Journal of the SIAM, Series A: Control, 1(1):32-34, 1962.

[3] Michael R Clarkson and Fred B Schneider.
Hyperproperties.
J. Comp. Sec., 18(6):1157-1210, 2010.

Lancaster

University ¢

Acknowledgements

This work is supported, in part, by the Engineer-
ing and Physical Sciences Research Council (grant

number: EP/V026763/1).



http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.46.5647&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.46.5647&rep=rep1&type=pdf
https://epubs.siam.org/doi/pdf/10.1137/0301003
https://ecommons.cornell.edu/bitstream/handle/1813/11660/hyperproperties-tr.pdf?sequence=4

