Trustworthy Autonomous Systems RS-2B Securing the Control Surface

Cranfield University School of Aerospace, Transport and Manufacturing

Research Fellow: Dr. Burak Yuksek, burak.yuksek@cranfield.ac.uk Investigator: Prof. Gokhan Inalhan, inalhan@cranfield.ac.uk

RS2: Secure Operations of Autonomous Systems

Autonomous systems face numerous challenges in their operation, due to the uncertain and dynamic multi-layer attack surfaces

TAS-RS2 aims to solve following challenges

- Modelling & addressing potential attacks in discrete mission, control and communication layers
- Study & address hybrid cascaded cross-layer threats in the dynamic AS space

RS-2A: Exposure to cyber-physical attacks by characterizing the attack surfaces, i.e., entry points and likelihoods across the mission surface in a technology & mission-invariant manner.

RS-2B: Provide quantifiable safety and feedback to the mission surface when the limits of secure controllability are compromised within a time horizon under current policies and adversarial situations.

RS-2C: Provide secure communications across the different layers in the informatics plane from detection of signals to networking.

RS-2B: Securing the Control Surface

Autonomous Systems rely on the ability to conduct run time adaptations of control decisions over attacks or "perceived" attacks:

- Adversaries
- **Environment uncertainties**
- Degraded performance

How to do this in a "trustworthy" fashion?

- Safe,
- Secure,
- Reliable

Attack Definitions

- Sensing and Communication Errors Loss of an actuator
- **Environmental conditions**
- Electronic attacks
- Electromagnetic deception
- Injecting false pattern into data

A. Dynamical V&V of the AI-Based FCS

Mathematical Model of Boeing 737 with;

- 6 degrees-of-freedom nonlinear dynamics
- Propulsion system model
- Turbulence, wind and gust effects
- Sensor models

B. Explainability of the Al-Based FCS

Interpretability => Explainable and Trustworthy Al

- Physics Informed Deep Learning
- Ability to identify system behaviour
- Generalization capability
- Anomaly detection/classification

0.15

C. Adaptive Security Strategies

Stabilized Reference Model $x_m(t)$

Adaptation

Mechanism

System

i.e. Open-loop Reference Model)

Variable Observer Gain Matrix

 $\mathbf{L}'_{v}(t) = \mathbf{P}_{v} \left(\frac{v_{opt}k(t)}{v_{opt}k(t) + 1} I_{n_{p} \times n_{p}} \right)$

Deep Reinforcement Learning Based Adaptive Controls

Closed-loop Reference Model

r(t)

 $e_y^o(t)$

 $\dot{e}_{y}^{o}(t)$

 $\int e_y^o(t) dt$

Stabilized Reference Mode

i.e. Open-loop Reference Model)

RL Agent

Reward

Learn adaptation strategy through observation between reference model and the reality

- MRAC - CRM with v = 0.2

CRM with v = 0.4

CRM with v = 0.6

CRM with v = 0.8CRM with v = 1.0CRM with v = 1.2

CRM with $v_{opt} = 0.5$

RL-CRM

k(t)

Time (sec)

