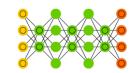
An Adaptive Federated Meta-Learning Framework for **Autonomous Systems**

Zhengxin Yu, Neeraj Suri (PI), Lancaster University

Background

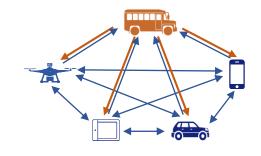
Data is born at the edge

- Billions of smart devices generate data
- Data enables smarter models

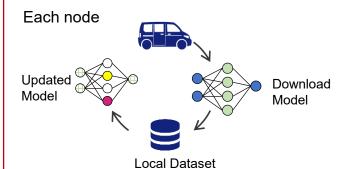

Data processing is moving on edges

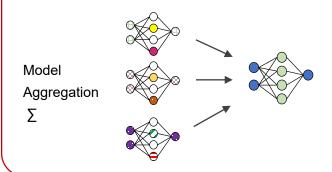
- Improved service latency
- Work offline Core Cloud **Edge Servers Devices** Distributed Locations

Emerging machine learning technologies

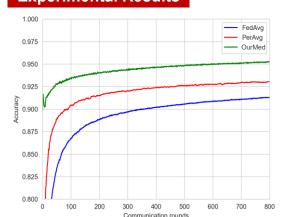


Challenges


- High mobility of ASs
- Diversity of the AS environment
- Non-IID data distribution among ASs
- Security and privacy risks


Methods

- An adaptive meta-learning architecture is proposed to adapt to new environment.
- A peer-to-peer FL framework is developed to reduce privacy risks and support mobility of ASs.
- An initial shared model and personalized models for ASs are trained in the framework.



Model Training

Experimental Results

Acknowledgements

Research Council

This work is supported, in part, by the Engineering and Physical Sciences Research Council [grant number: EP/V026763/1]

