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Abstract

Reflection attacks are one of the most intimidating threats organizations
face. A reflection attack is a special type of distributed denial-of-service
attack that amplifies the amount of malicious traffic by using reflectors
and hides the identity of the attacker. Reflection attacks are known to
be one of the most common causes of service disruption in large net-
works. Large networks perform extensive logging of NetFlow data, and
parsing this data is an advocated basis for identifying network attacks.
We conduct a comprehensive analysis of NetFlow data containing 1.7
billion NetFlow records and identified reflection attacks on the Network
Time Protocol (NTP) and NetBIOS servers. We set up three regres-
sion models including the Ridge, Elastic Net and LASSO. To the best
of our knowledge, there is no work that studied different regression
models to understand patterns of reflection attacks in a large network.
In this paper, we (a) propose an approach for identifying correlations
of reflection attacks, and (b) evaluate the three regression models on
real NetFlow data. Our results show that (a) reflection attacks on the
NTP servers are not correlated, (b) reflection attacks on the NetBIOS
servers are not correlated, (c) the traffic generated by those reflection
attacks did not overwhelm the NTP and NetBIOS servers, and (d)
the dwell times of reflection attacks on the NTP and NetBIOS servers
are too small for predicting reflection attacks on these servers. Our
work on reflection attacks identification highlights recommendations that
could facilitate better handling of reflection attacks in large networks.

Keywords: Large networks, NetFlow data, Reflection attacks, Regression
analysis
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1 Introduction

The capacity of large networks has grown significantly in order to sustain the
level of performance required by machine learning, scientific and engineering
applications. In this context, the security of the network has become critical to
meet the expectations of its users. Analyzing network attacks requires aware-
ness of the sequence of events encountered by the network component. While
recent works have focused on analyzing attacks on specific network components
[1, 2], answering how an attack on a network occurs requires an integrated
approach towards correlation-based log mining [3, 4]. Correlation analysis has
been widely used to detect intrusions in large networks [5-9], with its strengths
in aggregating several alerts with low false positives and low false negatives,
resulting in tremendous improvements in detection accuracy. A recent study
empirically evaluated the Pearson and Spearman-Rank correlation algorithms
using NetFlow data obtained from an enterprise network [10]. From their study,
they observed that reflection attacks on the Secure Shell (SSH) and Domain
Name Service (DNS) servers exist in the NetFlow data and those attacks are
not correlated.

Several recent large-scale Distributed Denial-of-Service (DDoS) attacks
studies have provided valuable insights into DDoS attacks [11-14]. These stud-
ies have shown that DDoS attacks are regularly executed on many network
protocols. In a DDoS attack, a large volume of network packets is generated
to flood a target host without using an intermediary. In contrast to DDoS
attacks, which do not mask the sender’s source IP address, a reflection attack
is a special type of DDoS attack that uses any TCP or UDP-based service as
a reflector and masks the sender’s source IP address [15]. A spoofed network
packet, where the source IP address is replaced by the IP address of another
device, is typically used to send the response to the victim. Thus, an attacker
can magnify the amount of malicious traffic and obscure the sources of the
attack traffic to cause significant disruption to the operation of a large net-
work. As such, it is important to identify correlations of reflection attacks,
as it is to identify the dwell time between these attacks. We define the dwell
time as the time elapsed between the start time of one reflection attack and
the start time of the next reflection attack. When network attack prediction
schemes are supported by knowledge of the dwell times of an attack, it can
help the network administrators in using network attack mitigation schemes
to respond to an impending attack [16]. When the dwell times of an attack
are small, a network attack mitigation scheme which scatters the attack traffic
can be used to absorb the attack.

Several recent works have developed Pearson correlation-based methods
that identified DDoS attacks [17], identified reflection attacks [10], detected
activities of groups of bots [18], and detected network intrusions [19]. S. Chawla
et al. [17] proposed a framework that used Pearson correlation to identify DDoS
attacks and flash events. D.P. Hostiadi and T. Ahmad [18] proposed a new
model that detected correlations of activities of group of bots. Their model con-
sists of four phases: (a) data preprocessing, (b) data segmentation, (c) feature



extraction and (d) bot group detection. They implemented (a) the Mean Abso-
lute Error metric that measures the similarity of activities between two groups
of bots, and (b) the Pearson correlation algorithm that finds relationships
between the activities of two bot groups. A. Heryanto et al. [19] implemented a
feature selection workflow that uses Pearson correlation to identify important
network metrics for detecting intrusions. E. Chuah et al. [10] applied Pearson
correlation and Spearman-Rank correlation to identify the dates of reflection
attacks. Although these works showed that the Pearson correlation algorithm
can identify relationships between malicious activities, it has some limita-
tions that we address in this paper. First, Pearson correlation only identifies
relationships between two samples. Second, several correlated samples can be
produced and all the correlated samples must be manually analyzed before an
attack can be identified, which is not desirable because it is a time-consuming
process that incurs a significant delay in identifying correlations of a network
attack. Therefore, we use the power of regression models, which belong to a
type of supervised learning that learns a relationship between a dependent
variable and multiple independent variables. We train the Ridge, Elastic Net
and LASSO regression models on NetFlow data to obtain the regression coef-
ficients for all independent variables, and determine the applicability of these
regression models in identifying correlations of reflection attacks.

In this paper, we conduct an empirical analysis of reflection attacks in
a large enterprise network, carefully compare the Ridge, LASSO and Elastic
Net regression models and present several new findings. The correlation of
reflection attacks on the NTP server and correlation of reflection attacks on the
NetBIOS server are new ones and have not been reported in an earlier paper
[10]. We validate our approach on 1.7 billion NetFlow records obtained from a
large enterprise network operated by Los Alamos National Laboratories, and
apply statistical validation methods to ensure that the results are accurate.
The main contributions of this paper are given as follows:

® We identify reflection attacks in a large enterprise network and provide
estimates of NetFlow records which are not correlated with the reflection
attack.

® We analyze the NetFlow records which are associated with a reflection attack
to drill down into their specific activity. Based upon the insights gained
from our correlation analysis, we discuss how these findings can be used to
improve the network’s security against reflection attacks.

® We extract the NetFlow records associated with the reflection attack and
obtain their dwell times.

Our initial assumption is that reflection attacks are correlated in the
NetFlow data. We compared the Ridge, Elastic Net and LASSO regression
models and are surprised to learn that the regression coeflicients learned by
all three regression models are close to 0 or equal to 0. Furthermore, the dwell
times of reflection attacks ranged from 0 to 198 seconds, multiple source and
destination devices were associated with reflection attacks on the NTP and



NetBIOS servers, and a small percentage of network traffic was generated by
the reflection attack.

The remainder of this paper is organized as follows: First, we review the
related works in Section 2. Then, we describe the network model and NetFlow
data in Section 3. We present the motivation and describe the details of our
approach in Section 4. Our evaluation on the NetFlow data obtained from
an enterprise network is presented in Section 5. We discuss the results and
limitations of our approach in Sections 6 and 7 respectively, and we conclude
with a summary and future work in Section 8.

2 Related work

We divide the related works into two categories: (a) machine learning-based
intrusion detection systems that detected DDoS attacks, and (b) correlation
analysis-based intrusion detection systems that detected DDoS attacks.

2.1 Machine Learning-based Intrusion Detection Systems

We focused on very recent works that developed Intrusion Detection Sys-
tems (IDS) which integrated machine learning techniques to detect DDoS
attacks. In [20], the authors proposed a natural language processing (NLP)-
based approach called DDoS2Vec that learns the characteristics of DDoS
attacks. They evaluated their approach on one year’s worth of flow samples
obtained from an Internet Exchange Provider and compared the performance
of DDoS2Vec with Word2Vec, Dos2Vec and Latent Semantic Analysis. In
[21], the authors proposed a novel approach that stacks multiple deep neural
networks (DNN) to detect DDoS attacks. They evaluated their approach on
a benchmark Cybersecurity dataset and compared the performance of their
method with existing machine learning models. In [22], the authors imple-
mented an approach that compared multiple Support Vector Machine (SVM)
kernels that are trained with uncorrelated features to detect reflection ampli-
fication DDoS attacks on the Simple Network Management Protocol (SNMP)
and DNS servers. In [23], the authors proposed a feature reduction method
that integrated Information Gain (IG) and correlation-based feature selection
techniques to detect reflection and standard DDoS attacks. They evaluated
their method on two public Cybersecurity datasets and compared the perfor-
mance of their approach with state-of-the-art feature selection methods. In
[24], the authors developed a decision tree-based IDS that uses the J48 classifier
to detect reflection amplification DDoS attacks, and evaluated their method
on the CICDD0S2019 Cybersecurity dataset. In [25], the authors proposed a
novel technique that combined clustering and classification machine learning
algorithms. Their technique consists of three phases. In the first phase, the
DBSCAN clustering algorithm is used to separate DDoS traffic from normal
traffic. In the second phase, the Euclidean distance metric is used to calculate
the features in each cluster. In the third phase, a classification model is built
and a label that indicates whether a cluster contains DDoS traffic or normal



traffic is assigned to each cluster. They evaluated their method on two public
Cybersecurity datasets and compared the performance of their classifier with
the Decision Tree, Random Forest, Naive Bayes and Support Vector Machine
classifiers. In [26], the authors compared the Random Forest (RF), Naive Bayes
(NB), Logistics Regression (LR), K-Nearest Neighbour (KNN) and Multilayer
Perceptron (MLP) algorithms to filter normal traffic from DDoS traffic, and
evaluated these algorithms on two public DDoS datasets. In [27], the authors
proposed a deep learning model to detect DDoS attacks. They evaluated their
model on the CICDD0S2019 dataset that includes traces of DDoS attacks on
several network protocols, and showed that a three layer deep neural network
model achieved the highest detection accuracy. Further, in [28], the authors
proposed an approach called MOP-IDS. It is based on a Multi-Objective
Optimization (MOO) process composed of: (a) clustering alerts generated by
multiple IDS to decrease the set of alerts, (b) filtering alerts to create a set
of potential false alarms, (c) grouping similar alerts produced by the different
IDS and (d) classifying an alert as a false positive or false negative. The per-
formance of MOP-IDS was evaluated using accuracy, true positive rate and
true negative rate metrics on three public Cybersecurity datasets that contain
denial-of-service traces . In [29], the authors proposed a novel approach called
CANN. It is based on K-Means clustering that sums two distances: (a) the dis-
tance between a data sample and its cluster center and (b) the distance between
a data sample and its nearest neighbour. A new 1-dimensional distance based
feature is created and used by the K-Nearest Neighbour classifier to classify
each data sample into normal or abnormal. The performance of CANN was
evaluated using accuracy, detection rate and true positive rate metrics on a
public Cybersecurity dataset that contains traces of DDoS attacks. In [30],
the authors proposed a two-stage machine learning architecture that uses (a)
the K-Means clustering algorithm to detect an attack, and (b) Decision Trees
(DT), Random Forest, Adaptive Boosting (AB) and Naive Bayes algorithms
to classify several types of attacks. They evaluated their architecture on a pub-
lic Cybersecurity dataset that includes traces of denial-of-service attacks, and
showed that decision trees and random forest algorithms achieved the highest
classification accuracy. In [31], the authors compared the performance of Mod-
est Adaboost (MA), Real Adaboost (RA) and Gentle Adaboost (GA) on five
public Cybersecurity and DDoS datasets. They showed that (a) the error rate
of Modest Adaboost is higher compared to the error rates of Gentle and Real
Adaboost and (b) Gentle and Real Adaboost have the same error rate perfor-
mance. In [32], the authors proposed a method that uses L2 regularization and
dropout techniques to improve the performance of Convolution Neural Net-
works (CNN) for IDS. They showed that their method achieved the highest
precision, recall and F1l-scores compared to several popular machine learning
techniques, and evaluated their method on a Cybersecurity dataset that con-
tains traces of DDoS attacks. In [33], the authors proposed a modified System
Call Graph (SCG) that uses a Deep Neural Network (DNN) to integrate infor-
mation from different detection techniques. They evaluated their approach on



three Cybersecurity datasets that include traces of DDoS attacks, and showed
that their model achieved high detection rates and low false positives.

2.2 Correlation Analysis-based Intrusion Detection
Systems

We focused on very recent works that developed Intrusion Detection Systems
which integrated correlation techniques to detect DDoS attacks. In [34], the
authors introduced a new feature selection method called CorrCorr. It uses
the Multivariate Correlation (MC) and Addition-Based Correlation (ABC)
methods to generate feature correlations and normal network traffic profiles
from which anomalies that deviate from the normal profile are detected. They
evaluated their method on two public Cybersecurity datasets that include
traces of DDoS attacks. In [35], the authors present a tool that efficiently
correlates cross-host attacks across multiple hosts. Their tool uses tagged
provenance graphs that models the techniques and operational procedures used
by an attacker. They define a novel Graph Similarity-based Alert Correlation
(GSAC) technique that determines the entities that are associated with alerts
generated on different hosts, and evaluated their tool on two public Cyber-
security datasets that contains attack traces on multiple hosts. In [36], the
authors proposed a distributed denial-of-service attack detection method that
combines the Enhanced Random Forest (ERF) ensemble learning method and
an Optimized Genetic Algorithm (OGA). In [37], the authors demonstrated
an approach that utilizes Multivariate Correlation analysis to identify DDoS
attacks in real-time. In [38], the authors presented a correlation-based approach
that transformed clusters of alerts into graph structures and computed sig-
natures of repeated network patterns to characterize clusters of alerts. They
evaluated their approach on real-world attack scenarios that include DDoS
attacks. In [39], the authors proposed an efficient framework for correlating
alerts in early warning systems. Their framework combines statistical and
stream mining techniques to extract sequences of alerts that are part of mul-
tistep attack scenarios, and evaluated on two DDoS attack scenarios. In [40],
the authors proposed a hybrid model that integrated Multi-Feature Correla-
tion (MFC) and a deep neural network. They evaluated their model on the
UNSW-NB15, AWID, CICIDS 2017 and CICIDS 2018 Cybersecurity datasets
which include traces of DDoS attacks.

2.3 Summary

To the best of our knowledge, there is no work that compared multiple regres-
sion models to identify correlations of reflection attacks on the NTP servers and
identify correlations of reflection attacks on the NetBIOS servers. A summary
of the main attributes of the reviewed works is given in Table 1. Differently to
the works in Table 1, we (a) developed an approach that evaluates the ability
of the LASSO, Ridge and Elastic Net regression models in identifying corre-
lations of reflection attacks on the NTP servers and correlations of reflection



attacks on the NetBIOS servers, (b) identify the devices and network traf-
fic associated with the NTP and NetBIOS servers reflection attacks, and (c)
identify the dwell times between reflection attacks on the NTP and NetBIOS

Servers.

Table 1 Summary of the main attributes of the reviewed works

Study Method Dataset Type of attack
Singh Samra, R. et. al. [20] NLP IXP samples Standard DDoS
Benmohamed, E. et. al.[21] DNN CICDDoS2017 Standard DDoS
Dasari, K.B. et. al. [22] SVM SNMP & DDoS Reflection DDoS
Kshirsagar, D. et. al. [23] 1IG & CICDDoS2019, Reflection DDoS,
Correlation KDD Cup 1999 Standard DDoS
Ahuja, V. et. al. [24] J48 classifier CICDDoS2019 Reflection DDoS
Najafimehr, M. DBSCAN, CICIDS2017, Standard DDoS
et. al. [25] Euclidean CICDDo0S2019
Singh Samom, P. RF, NB, LR, CICDDoS2019, Standard DDoS
et. al. [26] KNN, MLP UNSW-NB15
Cil, A.E. et. al. [27] Deep learning CICDDo0S2019 Standard DDoS
Hachmi, F. et. al. [28] MOO, DARPA 1999, Standard DDoS
clustering, NSL-KDD,
filtering Env-data
Lin, W.-C. et. al. [29] K-Means, KDD Cup 1999 Standard DDoS
KNN
Kaja, N. et. al. [30] K-Means, DT, KDD Cup 1999 Standard DDoS
RF, AB, NB
Shahraki, A. et. al. [31] MA, RA, GA KDD Cup 1999, Standard DDoS
UNSW-NBI15,
TRABID, CIC17,
NSL-KDD,
Elsayed, M.S. et. al. [32] CNN InSDN Standard DDoS
Mora-Gimeno, F.J. SCG, DNN DARPA 1999, Standard DDoS
et. al. [33] UNM, ADFA-LD
Gottwalt, F. et. al. [34] MC, ABC NSL-KDD, Standard DDoS
UNSW-NB15
Ghosh, S.K. et. al. [35] GSAC OpTC-NCR2, Standard DDoS
DARPA TC
Cheng, J. et. al. [36] ERF, OGA CAIDA 2007 Standard DDoS
More, K.K. et. al. [37] MC KDD Cup 1999, Standard DDoS
NSL-KDD, Custom
Haas, S. et. al. [38] Graphs DShield Standard DDoS
Ramaki, A.A. et. al. [39] Stream mining DARPA 2000 Standard DDoS
Lei, S. et. al. [40] MFC, DNN CIC17, CIC18 Standard DDoS
UNSW, AWID
This paper LASSO, Ridge, NetFlow Reflection DDoS

Elastic Net
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3 Network Model and Data

In this section, we present the network model to which our approach is
applicable in Section 3.1. Then, we describe the NetFlow data in Section 3.2.

3.1 Network Model

Our approach is based on a generic client-server network model as depicted in
Fig. 1 [41]. The network consists of client devices, servers and routers. Client
devices are separate computers that access a service made available by a server.
The server is another computer that the client accesses the service by way of
the network. Traffic between these networks are managed by the router, which
forwards packets to their destination Internet Protocol (IP) addresses. The
workflow for an Intrusion Detection System (IDS) consists of two phases, as
depicted in Fig. 2 [42]. In phase 1, network packet data between a client and
a server, two clients or two servers are collected by the Router, and then the
data is sent to the Data store which aggregates the data. Once the data is
aggregated, in phase 2 the Analysis console retrieves the data and analyzes it
to identify an attack.

Client device Client device é\orhilgls;s

Data store

y [ - \ 3

SOMOOO0 = EMmrrr -‘ 3

Aoono0 — goonog T b

g

O
 — —_ —_ —_  — —_
 —  —  —  —  —  —
 — —_ —_ —_  — —_
 — —_ —_ —_  — —_
— — — — — —
— —_ —_ —_ — —_
— i —]  IN— S E—
Email server Database server

Fig. 1 Client-server network model Fig. 2 An IDS setup

3.2 NetFlow Data

The NetFlow data is collected on most networks [43]. An example of a NetFlow
record is given as follows:
6652800, 4666, Compl107130, Comp584379, 6, Port04167, 443, 130,
82, 71556, 55117

In this NetFlow record, there are 11 fields. The first field contains the
start time (6652800). The second field contains the duration of the commu-
nications between the source and destination devices (4666). The third and
fourth fields contain the source (Comp107130) and destination (Comp584379)
devices, respectively. The fifth field contains the network protocol number (6,
i.e., TCP). The sixth and seven fields contain the source (Port04167) and
destination (443) ports, respectively. The eighth and ninth fields contain the



number of packets (130) and bytes (82) sent by the source device, respectively.
The tenth and eleventh fields contain the number of packets (71556) and bytes
(565117) sent by the destination device, respectively.

4 Identifying Correlations of Reflection Attacks

To execute a reflection attack, an attacker uses a tactic called IP (Internet
Protocol) spoofing which replaces the real sender’s source IP address with the
IP address of another device, as depicted in Fig. 3. This causes the target
device to respond to the request and send the answer to the victim host IP
address. For example, a firewall may be configured to allow port 137 (i.e.,
NetBIOS) traffic so that computers on a local area network can communicate
with network hardware and transmit data across the network. An attacker can
take advantage of such a rule in the firewall and use some NetBIOS servers as
intermediaries to execute a reflection attack on other NetBIOS servers.

Attacker 1
real IP: 192.168.202.4

| Router
(@D
| source (spoofed):
| 192.168.206.8
destination:
l__LLl 192.168.206.41 E—
[GED) N (G (D) N (G
Attacker 2 () (@) (@) (D)
real IP: 192.168.202.78 G} I G QD) ) G
— (GED) I (G [GED) N G
O |CD O |CD
|:| CO | source (spoofed):
[ 1L 1 0 1 [ 1
192'_1 68_'206'6 NetBIOS servers IP: NetBIOS servers IP:
destination: (Victim host) (target of attack)
I__LLI 192.168.206.40 192.168.206.6 192.168.206.40
192.168.206.8 192.168.206.41

Fig. 3 IP address spoofing process.

Thus, our objective is to determine if reflection attacks are “correlated”
or “not correlated”. By “correlated”, we mean the NetFlow records which are
assigned the largest positive regression coefficients by the regression model. By
“not correlated”, we mean the NetFlow records which are assigned regression
coefficients close to 0 by the regression model. In this paper, we aim to identify
correlations of reflection attacks in the NetFlow data. The research problem
that we address in this paper is given as follows: Given (a) the NetFlow data,
(b) a network protocol number, and (c) a range of dates:

® Identify the NetFlow records which are assigned the largest positive regres-
sion coefficients or the smallest regression coefficients by the regression
model.

® Identify the devices which are associated with the reflection attack and
obtain the amount of traffic which is generated by the attack.

e Identify the time elapsed between the start times of two adjacent NetFlow
records which are associated with the reflection attack.
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NetFlow 1 Data 2 Regression
data preprocessor models
’ trainer

Feature-count
data matrices

b 4 3 Regression Final
validator model
Lists of regression

coefficients

Fig. 4 Our approach consists of three modules: (a) Data preprocessor, (b) Regression
models trainer, and (c) Regression models validator.

As such, the workflow we propose consists of three phases, as depicted in
Fig. 4. The first phase in the workflow is Data preprocessing. It extracts the
features in the NetFlow data and organizes the features into data structures.
After the data structures are generated, the second phase of Regression models
training applies different regression algorithms to learn the regression coeffi-
cients of multiple features given a target feature. This phase corresponds to
“identifying” correlations of reflection attacks from the NetFlow data. Then,
the third phase of Regression models validation applies statistical validation
techniques to determine whether the regression model’s estimated values are
close to the observed values in the data. Next, we present the details for each
of the three modules in the workflow.

4.1 Data Preprocessing

In the data preprocessing phase, the goal is to present the NetFlow data in a
structured format so that the data can be easily processed by data analysis
algorithms [44]. To attain this, we need to address three issues: (a) the NetFlow
data contains vectors of network traffic, (b) the NetFlow records are unlabelled,
and (c) the magnitude, range and unit of the feature values are different. By
unlabelled, we mean that there are no NetFlow records labelled as “malicious”
or “benign” in the NetFlow data.

4.1.1 Data Formatting

The NetFlow data is captured in a way such that the network traffic is repre-
sented by four vectors corresponding to all the NetFlow records for one day.
The four vectors are: (a) the number of packets sent by the source device, (b)
the number of bytes sent by the source device, (c) the number of packets sent
by the destination device, and (d) the number of bytes sent by the destina-
tion device. To address this issue, we construct a feature-count data matrix.
In this data matrix, the columns represent the NetFlow records and the rows
represent the samples of a vector in the NetFlow records. To construct the
feature-count data matrix, we implemented a function in the Data preprocessor
module. The process is given as follows:
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® Obtain the number of NetFlow records and initialize a feature-count data
matrix, where the columns and rows of the data matrix are equal to the
number of NetFlow records.

e Fill the diagonals in the data matrix with the vector value contained in
number of packets sent by the source device, number of packets sent by the
destination device, number of bytes sent by the source device or number of
bytes sent by the destination device corresponding to the respective NetFlow
record.

e Fill all the remaining cells in the data matrix with zero.

4.1.2 Data Scaling

In data scaling, the values in the data are transformed so that the values fit
within a specific scale. The values in the NetFlow data vary in terms of the
magnitude, range and unit. The size in the number of packets sent by a source
device is typically lower than the size in the number of bytes sent by that source
device. Furthermore, the range of values for the number of packets sent and
the number of bytes sent are different. Thus, in order for a regression model
to interpret the features on the same scale, we need to perform data scaling.

There are two standard methods for scaling data values [45]: (a) normaliza-
tion, and (b) standardization. Data normalization scales the data values into
a range of [0, n]. In contrast, data standardization scales the data values to
have a mean of 0 and a standard deviation of 1. Data normalization is useful
when the data is needed in the bounded intervals. However, it is difficult to
identify an outlier. In contrast, data standardization produces useful informa-
tion about outliers, which makes the regression model less sensitive to outliers
[45]. Thus, we scale the values in the feature-count data matrix so that the
values are centered around the mean with a unit standard deviation.

4.2 Regression Models Training

After the feature-count data matrix is generated, we need to identify (a) which
NetFlow records are correlated during the reflection attack, and (b) which
NetFlow records are not correlated during the reflection attack. To attain this,
we use the Ridge, LASSO and Elastic Net regression models to obtain the
regression coefficients for multiple NetFlow records given a target NetFlow.
Multiple linear regression (MLR) and polynomial regression (PLR) are
standard regression algorithms that are widely used to model complex rela-
tionships with many variables [46]. Multiple linear regression models the
relationship between the dependent variable and two or more independent
variables using a straight line. In contrast, polynomial regression models the
relationship between the dependent variable and two or more independent
variables as a n'" degree polynomial. However, MLR and PLR models are
susceptible to overfitting on the training data, which causes the model to per-
form poorly on new data. Differently to MLR and PLR models, which do not
use regularization, the LASSO, Ridge and Elastic Net regression models use
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regularization to constrain the regression coefficients and improve the model’s
accuracy. Regularization is achieved by penalizing variables that have a large
coefficient value. The LASSO, Ridge and Elastic Net regression models func-
tions are given in Table 2. The LASSO regression model includes a penalty
term called Ll-norm [47]. It sets the regression coefficients of some of the
independent variables to zero. The Ridge regression model includes a penalty
term called L2-norm. Differently to L1-norm, L2-norm shrinks the regression
coefficients of all the independent variables towards zero [48]. The Elastic Net
regression model includes both Ll-norm and L2-norm penalty terms [49].

Table 2 Summary of Regularized Regression Models

Model Penalty term Objective
LASSO L1-norm Automatic feature selection
Ridge L2-norm Manual feature selection

Elastic Net Ll-norm + L2-norm Semi-automatic feature selection

4.2.1 Handling Bias in Regularized Regression Models

To perform regression analysis, we need to address two issues: (a) handle bias
in the regularized regression model, and (b) select the penalty parameter. In
statistics, bias is anything that leads to a systematic difference between the
observed values in the data and the estimates which are produced by a regres-
sion model [46]. The LASSO, Ridge and Elastic Net regression models add
a penalty term in the cost function. The penalty term penalizes a regression
model with large regression coefficients, which reduces the model’s variance.
For example, if the number of packets sent by NTP server A ranges from 80,000
to 120,000 per minute and the number of packets sent by NTP server B ranges
from 800 to 1,200 per minute, the regression coefficient for the number of pack-
ets sent by NTP server B of 1 packet change will be a much larger coefficient
in regard to its change in the number of packets sent compared to a 1 packet
change in the number of packets sent by NTP server A. If a larger regres-
sion coefficient for NTP server B is obtained, then the regularized regression
model will penalize NTP server B’s regression coefficient. As a result, a biased
model can be produced. To resolve this issue, we standardize all the values in
the feature-count data matrix. Then, we input the standardized feature-count
data matrix into the LASSO, Ridge and Elastic Net regression models, train
the regression model and obtain the fitted regression model.

4.2.2 Selecting the penalty parameter

The penalty parameter (\) is a value that controls the amount of shrinkage of
the regression coefficients in the LASSO, Ridge and Elastic Net regression mod-
els [46]. When A = 0, no regression coefficients are removed. When A increases,
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more regression coefficients are removed. When A = oo, all the regression coef-
ficients are removed. To select the best value for A\, we use a general approach
called k-fold cross validation [44]. It extracts a portion of the data and sets it
aside to be used as a test set. The remaining portions of the data are used as
the training set. The regression model is trained on the training dataset. Then,
the test dataset is used to test the regression model. 10-fold cross-validation is
typically used to obtain the best A value [44]. We implemented a function in
the Regression models trainer module to perform 10-fold cross validation and
select the penalty parameter. The process is given in Algorithm 1:

Algorithm 1 Select the penalty parameter

Require: feature-count data matrix M, regression model P
Initialize empty vector lambda_values] ];
number_lambdas < 20;
A+ 0.1;
for i < 1 to number_lambdas do
lambda_values[i] - A;
A A+0.1;
end for
Divide M into 10 folds;
Initialize empty key-value pair vector penalty_mse] |;
for j < 1 to 10 do
Divide M; into 10 parts;
Assign parts 1 to 9 as the training set M]Tmm;
Assign part 10 as the test set MJTE“;
for k <+ 1 to number_lambdas do
A < lambda_values[k];
Assign A to penalty parameter in regression model P;
Train regression model P using M jT rain,
Test regression model P using M jT est,
Obtain Mean Squared Error (MSE) from Test regression model P;
penalty_mselk] << A\, MSE >;
end for
end for
Obtain the A associated with the smallest MSE from array penalty_mse;

4.3 Regression Models Validation

Once the regression model is trained, we need to assess the model’s accu-
racy. There are two standard metrics for measuring how close the values
estimated by the regression model and the observed values in the data are.
The metrics are [45]: (a) coefficient-of-determination (R?), and (b) Root Mean
Squared Error (RMSE). The coefficient-of-determination is the proportion of
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variation in the dependent variable that is predictable from the independent
variables. Differently to R?, RMSE is the average difference between the regres-
sion model’s estimated values and the observed values. A RMSE value ranges
between 0 and infinity. If the RMSE value is close to 0, it shows that the regres-
sion model replicated the observed values accurately. However, it becomes
difficult to interpret a large RMSE value. In contrast to the RMSE value, the
R? value ranges between 0 and 1. If R? = 0, it shows that the regression
model’s estimated values are different from the observed values. If R? = 1, it
shows that the regression model’s estimated values match the observed values.
Thus, we use the R? statistic to obtain the accuracy of the Ridge, LASSO and
Elastic Net regression models.

4.3.1 Accounting for Inflation in R?

The R? statistic is at least weakly increasing when more independent variables
are added to the regression model. If redundant independent variables were
included in the regression model, the R? value remains the same or increases.
Consequently, the R? statistic alone cannot determine if the independent vari-
ables are useful. To resolve this issue, we obtain the adjusted R? value [50].
It determines whether adding more independent variables actually increases
the regression model’s fit. We implemented a function in the Regression mod-
els validator module to calculate the adjusted R2. The formula for calculating
the adjusted R? is [45]: 1 — {(1 — R®)(n — 1) = (n — p — 1)}, where n is the
number of NetFlow records associated with the reflection attack and p is the
total number of independent variables.

5 Evaluation on an Enterprise Network

We conduct our study of reflection attacks on an enterprise network operated
by Los Alamos National Laboratories. The network hosts 60,000 devices and
provides storage and user account services. The NetFlow data is collected
in the network [51]. One day’s worth of NetFlow data contains 220,000,000
NetFlow records on average. All the NetFlow records are unlabeled. It was
reported that the NetFlow data contains compromised devices [52], but the
times and number of compromised devices are not known. Thus, we randomly
select eight days worth of NetFlow data for analysis.

5.1 Phase 1: Identify Correlations of Reflection Attacks

To ascertain whether reflection attacks are correlated or not correlated, first we
obtain the NetFlow records which are associated with a reflection attack. We
implemented a function in our workflow to scan the NetFlow data and extract
NetFlow records containing the same source and destination port numbers. We
applied the function to the eight days of NetFlow data and identified reflection
attacks on several network protocols, though we focused on a subset of attacks
as reflection attacks on the NTP and NetBIOS servers. DDoS attacks on the
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NTP and NetBIOS servers have been widely reported [12, 13]. For each day,
we assigned the first NetFlow record as the dependent variable and assigned
the remaining NetFlow records as independent variables. Then, we trained the
Ridge, LASSO and Elastic Net regression models on the four attributes in the
NetFlow data separately and obtained the fitted regression models. The four
attributes are: (a) number of packets sent by the source device, (b)
number of bytes sent by the source device, (c) number of packets
sent by the destination device, and (d) number of bytes sent by the
destination device.

5.1.1 Reflection Attack on the NTP Server

First, we obtain the R? and adjusted R? values for the Elas-
tic Net, Ridge and LASSO regression models trained on the
number of packets sent by the source device attribute. The adjusted
R? shows if adding more NetFlow records in the LASSO, Ridge and Elastic
Net regression models increases the R? value. To obtain the adjusted R?
value, we set p = 1 and n = the number of NetFlow records associated with
the NTP server reflection attack. The R? and adjusted R? values are given
in Table 3. From Table 3, we observed that (a) the R? and adjusted R?
values for the Ridge regression model ranged from 0.01 to 0.03 on days 1,
3, 4,5, 7 and 8, 0.05 on day 2 and 0.07 on day 6, (b) the R? and adjusted
R? values for the Elastic Net regression model ranged from 0.01 to 0.03 on
days 1, 4, 5, 6, 7 and 8, 0.04 on day 3 and 0.07 on day 2, and (c) the R? and
adjusted R? values for the LASSO regression model ranged from 0.01 to 0.02
on days 1, 2, 3, 4, 6 and 7, 0.03 on day 8 and 0.06 on day 5. We obtained
the R? and adjusted R? values for the Ridge, Elastic Net and LASSO regres-
sion models trained on the number of bytes sent by the source device,
number of packets sent by the destination device, and number of
bytes sent by the destination device attributes. Their R? and adjusted
R? values ranged from 0.01 to 0.07 over the eight days.

On all the eight days, the R? and adjusted R? values for the Ridge,
Elastic Net and LASSO regression models are close to 0, indicat-
ing that the accuracy of all three regression models are the same.
Furthermore, the range of R? and adjusted R? values in all three
regression models trained on the four attributes separately are the
same. Moreover, the R? and adjusted R? values for the Ridge, LASSO
and Elastic Net regression models are the same, indicating that more
independent variables added to all the three regression models did
not increase the regression model’s fit to the observed data. Thus,
the number of packets sent by the source device attribute can
be used as the primary attribute.
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Table 3 Accuracy of Ridge, Elastic Net (ENet) and LASSO regression models trained on
the “number of packets sent by the source device” attribute

Day 1 (n = 41125) \ Day 2 (n = 90891)
Metric Ridge ENet LASSO | Metric Ridge ENet LASSO
R? 0.02 0.02 0.02 R? 0.05 0.07 0.01
Adj. B> 0.02 0.02 0.02 Adj. B> 0.05 0.07 0.01
Day 3 (n = 88800) \ Day 4 (n = 113804)
Metric Ridge ENet LASSO | Metric Ridge ENet LASSO
R? 0.01 0.04 0.02 R? 0.02 0.02 0.02
Adj. B2 0.01 0.04 0.02 Adj. B2 0.02 0.02 0.02
Day 5 (n = 60863) \ Day 6 (n = 48336)
Metric Ridge ENet LASSO | Metric Ridge ENet LASSO
R? 0.03 0.01 0.06 R? 0.07 0.02 0.01
Adj. R>  0.03 0.01 0.06 Adj. R?  0.07 0.02 0.01
Day 7 (n = 72081) \ Day 8 (n = 53942)
Metric Ridge ENet LASSO | Metric Ridge ENet LASSO
R? 0.01 0.03 0.02 R? 0.03 0.03 0.03
Adj. B> 0.01 0.03 0.02 Adj. R?  0.03 0.03 0.03

Next, we obtain the residuals from the Elastic Net,
Ridge and LASSO regression models trained on the
number of packets sent by the source device attribute. A residual
is the difference between the regression model’s estimated value and the
observed value in the data. Residual analysis belongs to a class of techniques
for evaluating the goodness-of-fit of a fitted regression model. If a regression
model is a good fit to the observed data, all its residual values will be close to
0 or equals to 0. If a regression model is not a good fit to the observed data,
some of its residual values will not be close to 0. To obtain the proportion of
residuals, we implemented a function in the Regression models validator mod-
ule. The process for obtaining the proportion of residuals is given as follows:
(a) obtain the residual value for each sample in the regression model, (b)
obtain the percentage of all unique residual values, and (c) obtain the cumu-
lative distribution of the percentage of unique residual values. The proportion
of residuals in the Elastic Net regression model for day 1 is shown in Fig. 5.
From Fig. 5, we observed that (a) the residuals range from 0 to 80, and (b) a
proportion of the residuals are greater than 0. When the residuals are greater
than 0, it shows that the values estimated by the Elastic Net regression model
differ from the observed values in the data. We obtained the proportion of
residuals in the Elastic Net regression model for days 2 to 8. On all the 7
days, their residuals range from 0 to 80 and a proportion of those residuals are
greater than 0. Next, we obtained the residuals from the Ridge and LASSO
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regression models for days 1 to 8. On all the eight days, their residuals ranged
from 0 to 80 and a proportion of those residuals are greater than 0.

Cumulative Distribution
90% 100%

1.0

0.8

Proportion
0.6

0.4

0.2

0.0

0 20 40 60 80
abs(Residuals)
Fig. 5 Proportion of residuals in the Elastic Net regression model for day 1.

Next, we determine which one of three regression models best fit the data.
To achieve this, we apply a standard technique called the general F'-statistic.
The F-statistic is used to compare statistical models that have been fitted
to a dataset, in order to identify the statistical model that best describes
the population from which the data is sampled [45]. First, we define the null
and alternate hypotheses. The null hypothesis is that the sum-of-squares error
(SSE) of one regression model is close to the SSE of a different regression
model. The alternate hypothesis is that the SSE of one regression model dif-
fers significantly from the SSE of a different regression model. The formula for
computing the general linear F-statistic is [45]: (SSE&%JE iﬁi(%)) : 55?1511\242)
where M; and M, are two different regression models, dfy;; and dfyso are
the degrees of freedom associated with regression models M; and M respec-
tively. When F* > 3.95, we reject the null hypothesis in favour of the alternate
hypothesis. We implemented a function in the Regression model validator mod-
ule to obtain the F-statistic. We apply the general linear F-statistic on the
Elastic Net, Ridge and LASSO regression models and obtained the F* value.

)
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A summary of F-tests on the Elastic Net, Ridge and LASSO regression mod-
els is given in Table 4. From Table 4, we observed that from days 1 to 8 the
F* value is 0. Since F* < 3.95, we fail to reject the null hypothesis.

Table 4 F-test for the Elastic Net, Ridge and LASSO Regression Models

Day 1 (n = 41125) \ Day 2 (n = 90891)
SSE Dy F* SSE Dy F*
Elastic Net 41124 1 0 Elastic Net 90890 1 0
LASSO 41124 1 - LASSO 90890 1 -
Ridge 41124 1 0 Ridge 90890 1 0
LASSO 41124 1 - LASSO 90890 1 -
Elastic Net 41124 1 0 | Elastic Net 90890 1 0
Ridge 41124 1 - Ridge 90890 1 -
Day 3 (n = 88800) \ Day 4 (n = 113804)
SSE Dy F* SSE Dy F*
Elastic Net 88799 1 0 Elastic Net 113803 1 0
LASSO 88799 1 - LASSO 113803 1 -
Ridge 88799 1 0 Ridge 113803 1 0
LASSO 88799 1 - LASSO 113803 1 -
Elastic Net 88799 1 0 Elastic Net 113803 1 0
Ridge 88799 1 - Ridge 113803 1 -
Day 5 (n = 60863) \ Day 6 (n = 48336)
SSE Dy F* SSE Dy F*
Elastic Net 60862 1 0 Elastic Net 48335 1 0
LASSO 60862 1 - LASSO 48335 1 -
Ridge 60862 1 0 Ridge 48335 1 0
LASSO 60862 1 - LASSO 48335 1 -
Elastic Net 60862 1 0 Elastic Net 48335 1 0
Ridge 60862 1 - Ridge 48335 1 -
Day 7 (n = 72081) \ Day 8 (n = 53942)
SSE Dy F* SSE Dy F*
Elastic Net 72080 1 0 Elastic Net 53941 1 0
LASSO 72080 1 - LASSO 53941 1 -
Ridge 72080 1 0 Ridge 53941 1 0
LASSO 72080 1 - LASSO 53941 1 -
Elastic Net 72080 1 0 Elastic Net 53941 1 0
Ridge 72080 1 - Ridge 53941 1 -




19

On all the eight days, a proportion of residuals in all three regression
models are greater than 0, indicating that the values estimated by all
three regression models differ from the observed values in the data.
The residual values in all three regression models ranged from 0 to 80.
Furthermore, the F* value for all three regression models is 0. When
(a) the F* value is 0, (b) the range of residuals in all three regression
models are the same, and (c) a proportion of residuals in all three
regression models are greater than 0, the Elastic Net regression model
can be used as the main model.

Next, we obtain the regression coefficients for all NetFlow records in the
Elastic Net regression model. A summary of regression coefficients is given in
Table 5. From Table 5, we observed that all regression coefficients obtained for
days 1 to 8 are close to 0 or equal to 0. We obtained the regression coefficients
of all NetFlow records from the Ridge and LASSO regression models for days
1 to 8. On all the eight days, the regression coeflicients of all NetFlow records
in the Ridge and LASSO regression models are close to 0 or equal to 0.

Table 5 Regression Coefficients in the Elastic Net Regression Model.

Day 1 (n = 41125) \ Day 2 (n = 90891)
NetFlow 4530 12032 24563 | NetFlow 6708 12947 71236
records records

Coeff.  0.0004 0.001 0 Coeff.  0.0001  0.002 0

Day 3 (n = 88800) \ Day 4 (n = 113804)
NetFlow 7649 26196 54955 | NetFlow 47092 66712 -
records records

Coeff. 0.001  0.005 0 Coeff. 0.003 0 -

Day 5 (n = 60863) \ Day 6 (n = 48336)
NetFlow 7407 9983 43473 | NetFlow 2968 23095 22273
records records

Coeff.  0.0001  0.002 0 Coeff. 0.002  0.01 0

Day 7 (n = 72081) \ Day 8 (n = 53942)

NetFlow 12534 20617 38930 | NetFlow 10485 13798 29659
records records
CoefT. 0.0001  0.001 0 Coeff. 0.001 0.03 0
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On days 1 to 8, the regression coefficients of all NetFlow records associ-
ated with the NTP server reflection attack are close to 0 or equal to 0,
indicating that reflection attacks on the NTP servers are not correlated.

5.1.2 Reflection Attack on the NetBIOS Server

As was done with the NTP servers, we obtain the R? and adjusted R?
values for the Elastic Net, Ridge and LASSO regression models trained
on the number of packets sent by the source device attribute. We set
p = 1 and n = the number of NetFlow records associated with the Net-
BIOS server reflection attack. The R? and adjusted R? values are given
in Table 6. From Table 6, we observed that (a) the R? and adjusted R?
values for the Ridge regression model ranged from 0.01 to 0.02 on days
1 to 8, (b) the R? and adjusted R? values for the Elastic Net regres-
sion model ranged from 0.01 to 0.02 on days 1 to 8, and (c) the R? and
adjusted R? values for the LASSO regression model ranged from 0.01 to
0.02 on days 1 to 5, 7 and 8 and 0.04 on day 6. We obtained the R?
and adjusted R? values from the Ridge, Elastic Net and LASSO regres-
sion models trained on the number of bytes sent by the source device,
number of packets sent by the destination device, and number of
bytes sent by the destination device attributes. Their R? and adjusted
R? values ranged from 0.01 to 0.05 over the eight days.

,

On all the eight days, the R? and adjusted R? values from the Ridge,
Elastic Net and LASSO regression models are close to 0, indicating
that the accuracy of all the three regression models is the same. Fur-
thermore, the range of R? and adjusted R? values from all the three
regression models trained on the four attributes separately are the
same. Moreover, the R? and adjusted R? values for the Ridge, LASSO
and Elastic Net regression models are the same, indicating that more
independent variables added to all the three regression models did
not increase the regression model’s fit to the observed data. Thus,
the number of packets sent by the source device attribute can
be used as the primary attribute.

Next, we obtain the residuals in the Elastic Net,
Ridge and LASSO regression models trained on the
number of packets sent by the source device attribute. The propor-
tion of residuals in the Elastic Net regression model for day 1 is shown in
Fig. 6. From Fig. 6, we observed that (a) the residuals range from 0 to 80,
and (b) a proportion of the residuals are greater than 0. When the residuals
are greater than 0, it shows that the values estimated by the Elastic Net
regression model differ from the observed values in the data. We obtained
the proportion of residuals in the Elastic Net regression model for days 2
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Table 6 Accuracy of Ridge, Elastic Net (ENet) and LASSO regression models trained on
the “number of packets sent by the source device” attribute

Day 1 (n = 274017)

Day 2 (n = 381342)

Metric Ridge ENet LASSO | Metric Ridge ENet LASSO
R? 0.02 0.02 0.01 R? 0.04 0.02 0.02
Adj. R?  0.02 0.02 0.01 Adj. R?  0.04 0.02 0.02
Day 3 (n = 401589) \ Day 4 (n = 383427)
Metric Ridge ENet LASSO | Metric Ridge ENet LASSO
R? 0.01 0.01 0.01 R? 0.01 0.01 0.01
Adj. B2 0.01 0.01 0.01 Adj. R 0.01 0.01 0.01
Day 5 (n = 405236) \ Day 6 (n = 236899)
Metric Ridge ENet LASSO | Metric Ridge ENet LASSO
R? 0.01 0.01 0.01 R? 0.02 0.02 0.04
Adj. R®>  0.01 0.01 0.01 Adj. B2 0.02 0.02 0.04
Day 7 (n = 325218) \ Day 8 (n = 402723)
Metric Ridge ENet LASSO | Metric Ridge ENet LASSO
R? 0.01 0.01 0.01 R? 0.02 0.02 0.02
Adj. R>  0.01 0.01 0.01 Adj. R?  0.02 0.02 0.02

to 8. On all the 7 days, their residuals range from 0 to 80 and a proportion
of those residuals are greater than 0. Next, we obtained the residuals in the
Ridge and LASSO regression models for days 1 to 8. On all the eight days,
the residuals in the Ridge and LASSO regression models ranged from 0 to 80
and a proportion of those residuals are greater than 0.

Next, we determine which one of three regression models best fit the data.
We apply the general linear F-statistic on the Elastic Net, Ridge and LASSO
regression models and obtained the F™* value. A summary of F-tests on the
Elastic Net, Ridge and LASSO regression models is given in Table 7. From
Table 7, we observed that from days 1 to 8 the F* value is 0. Since F* < 3.95,
we fail to reject the null hypothesis.
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Fig. 6 Proportion of residuals in the Elastic Net regression model for day 1.

On all the eight days, a proportion of the residuals from the Elastic
Net, Ridge and LASSO regression models are greater than 0, indicating
that the values estimated by all the three regression models differ from
the observed values in the data. The residuals in all the three regression
models ranged from 0 to 80. Furthermore, the F** value for the Elastic
Net, Ridge and LASSO regression models is 0. When (a) the F"* value
is 0, (b) the range of residuals in all the three regression models are
the same, and (c¢) a proportion of residuals in all the three regression
models are greater than 0, the Elastic Net regression model can be used
as the main model.

Next, we obtain the regression coefficients for all NetFlow records in the
Elastic Net regression model. A summary of the regression coefficients is given
in Table 8. From Table 8, we observed that all the regression coefficients
obtained for days 1 to 8 are close to 0 or equal to 0. We obtained the regression
coeflicients of all NetFlow records in the Ridge and LASSO regression models
for days 1 to 8. On all the eight days, the regression coefficients of all NetFlow
records in the Ridge and LASSO regression models are close to 0 or equal to 0.



Table 7 F-test for the Elastic Net, Ridge and LASSO Regression Models

Day 1 (n = 274017)

Day 2 (n = 381342)

SSE Dy F * SSE Dy
Elastic Net 274016 1 0 Elastic Net 381341 1 0
LASSO 274016 1 - LASSO 381341 1 -
Ridge 274016 1 0 Ridge 381341 1 0
LASSO 274016 1 - LASSO 381341 1 -
Elastic Net 274016 1 0 Elastic Net 381341 1 0
Ridge 274016 1 - Ridge 381341 1 -
Day 3 (n = 401589) \ Day 4 (n = 383427)
SSE Dy * SSE Dy F*
Elastic Net 401588 1 0 Elastic Net 383426 1 0
LASSO 401588 1 - LASSO 383426 1 -
Ridge 401588 1 0 Ridge 383426 1 0
LASSO 401588 1 - LASSO 383426 1 -
Elastic Net 401588 1 0 Elastic Net 383426 1 0
Ridge 401588 1 - Ridge 383426 1 -
Day 5 (n = 405236) ‘ Day 6 (n = 236899)
SSE Dy F * SSE Dy F *
Elastic Net 405235 1 0 Elastic Net 236898 1 0
LASSO 405235 1 - LASSO 236898 1 -
Ridge 405235 1 0 Ridge 236898 1 0
LASSO 405235 1 - LASSO 236898 1 -
Elastic Net 405235 1 0 Elastic Net 236898 1 0
Ridge 405235 1 - Ridge 236898 1 -
Day 7 (n = 325218) \ Day 8 (n = 402723)
SSE Dy r* SSE Dy F*
Elastic Net 325217 1 0 Elastic Net 402722 1 0
LASSO 325217 1 - LASSO 402722 1 -
Ridge 325217 1 0 Ridge 402722 1 0
LASSO 325217 1 - LASSO 402722 1 -
Elastic Net 325217 1 0 Elastic Net 402722 1 0
Ridge 325217 1 - Ridge 402722 1 -

On days 1 to 8, the regression coefficients of all NetFlow records asso-
ciated with the NetBIOS server reflection attack are close to 0 or equal
to 0, indicating that the reflection attack on the NetBIOS servers are

not correlated.
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Table 8 Regression Coefficients in the Elastic Net Regression Model.

Day 1 (n = 274017)

Day 2 (n = 381342)

NetFlow 102452 171565 - NetFlow 215831 165511 -
records records
Coeff 0.0001 0 - Coeff 0.0001 0 -

Day 3 (n = 401589)

Day 4 (n = 383427)

NetFlow 29488 102419 269682 | NetFlow 192849 190578 -
records records
Coeff 0.0002  0.00001 0 Coeff 0.001 0 -

Day 5 (n = 405236)

Day 6 (n = 236899)

NetFlow 93279 311957 - NetFlow 46296 96846 93757
records records
Coeff 0.001 0 - Coeff 0.001 0.0001 0
Day 7 (n = 325218) \ Day 8 (n = 402723)
NetFlow 54203 271015 - NetFlow 43150 107872 251701
records records
Coeff 0.0001 0 - Coeff 0.001 0.001 0

5.2 Phase 2: Identify the Devices and Amount of Traffic
Generated by the Reflection Attacks on NTP and
NetBIOS Servers

The first phase of our analysis is characterized by the identification of corre-
lations of reflection attacks on the NTP servers and correlations of reflection
attacks on the NetBIOS servers. We observed that (a) reflection attacks on
the NTP servers are not correlated, and (b) reflection attacks on the NetBIOS
servers are not correlated. Our next objective is to identify the devices and the
amount of traffic generated by the NTP servers and NetBIOS servers reflection
attacks. To realize this, we obtain the source and destination devices which
are associated with those reflection attacks.

Therefore, we count the number of unique source and destination devices
associated with the NTP servers reflection attacks. A summary of source and
destination devices is given in Table 9. From Table 9, we observed that from
day 1 to day 8, multiple source and destination devices are associated with
reflection attacks on NTP servers.

Next, we obtain (a) the number of packets and bytes sent by these source
and destination devices associated with these NTP servers reflection attacks,
and (b) the total number of packets and bytes transmitted in the network.
The total number of packets, number of malicious packets and percentage of
malicious packets are shown in Fig. 7. From Fig. 7(a), we observed that the
percentage of malicious packets sent by these source devices range from 0.22%
to 20.44% over eight days. From Fig. 7(b), we observed that the percentage
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Table 9 Devices Associated with NTP Server Reflection Attacks

Day Qty. source Qty. destination Source Destination
devices devices packets packets
1 154 85 682,853 52,715,588
2 230 538 5,451,544 417,472,580
3 208 663 3,914,066 300,596,636
4 247 623 3,807,407 292,454,884
5 227 555 354,300,063 930,826,308
6 381 500 5,517,178 422,559,364
7 188 541 25,678,529 87,543,748
8 124 492 5,793,229 64,289,836

of malicious packets sent by these destination devices range from 2.56% to
52.01% over eight days. The total number of bytes, number of bytes contained
in the malicious packets and percentage of bytes in those malicious packets
are shown in Fig. 8. From Fig. 8(a), we observed that the percentage of bytes
in those malicious packets sent by these source devices is 0% on all eight days.
From Fig. 8(b), we observed that the percentage of bytes in the malicious
packets sent by these destination devices is 0% on all eight days. This result
shows that the malicious packets associated with the reflection attack on these

NTP servers contained 0-byte payloads.
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(a) Source devices.
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(b) Destination devices.

Fig. 7 Total number of packets, number of malicious packets and percentage of malicious

packets transmitted in the network.

servers.

While the percentage of malicious packets sent by these source devices
ranged from 0.22% to 20.44% and the percentage of malicious pack-
ets sent by these destination devices ranged from 2.56% to 52.01%
over eight days, all the malicious packets contained 0-byte payloads,
indicating that the reflection attack did not overwhelm these NTP
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Fig. 8 Total number of bytes, number of bytes contained in the malicious packets and
percentage of bytes in those malicious packets transmitted in the network.

As was done with the NTP servers, we count the number of unique source
and destination devices which are associated with the NetBIOS server reflec-
tion attack. A summary of source and destination devices is given in Table
10. From Table 10, we observed that from day 1 to day 8, multiple source and
destination devices are associated with reflection attacks on NetBIOS servers.

Table 10 Devices Associated with NetBIOS Server Reflection Attacks

Day Qty. source Qty. destination Source Destination
devices devices packets packets

1 57 43 6,171,080 520,546,040
2 69 81 27,483,909 235,479,535
3 67 114 17,089,572 424,362,101
4 57 57 11,205,241 344,953,694
5 50 108 246,062,878 543,844,657
6 540 95 74,180,774 475,430,314
7 275 205 11,666,399 65,478,293
8 78 327 28,006,385 348,190,008

Next, we obtain (a) the number of packets and bytes sent by these source
and destination devices associated with the reflection attack on these NetBIOS
servers, and (b) the total number of packets and bytes transmitted in the
network. The total number of packets, number of malicious packets and per-
centage of malicious packets are shown in Fig. 9. From Fig. 9(a), we observed
that the percentage of malicious packets sent by these source devices range
from 0.64% to 14.63% over eight days. From Fig. 9(b), we observed that the
percentage of malicious packets sent by these destination devices range from
6.34% to 45.65% over eight days. The total number of bytes, number of bytes
contained in the malicious packets and the percentage of bytes in those mali-
cious packets are shown in Fig. 10. From Fig. 10(a), we observed that the
percentage of bytes in those malicious packets sent by these source devices
is 0% on all eight days. From Fig. 10(b), we observed that the percentage of
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bytes in those malicious packets sent by these destination devices is 0% on all
eight days. This result shows that the malicious packets associated with the
reflection attack on these NetBIOS servers contained 0-byte payloads.
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Fig. 9 Total number of packets, number of malicious packets and percentage of malicious

packets transmitted in the network.
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Fig. 10 Total number of bytes, number of bytes contained in the malicious packets and
percentage of bytes in those malicious packets transmitted in the network.

Servers.

While the percentage of malicious packets sent by these source devices
ranged from 0.64% to 14.63% and the percentage of malicious packets
sent by these destination devices ranged from 6.34% to 45.65% over
eight days, those malicious packets contained a 0-byte payload, indi-
cating that the reflection attack did not overwhelm these NetBIOS

5.3 Phase 3: Identify the Dwell Times of Reflection
Attacks on NTP and NetBIOS Servers

The second phase of our analysis is characterized by the identification of
devices associated with the NTP and NetBIOS server reflection attacks and
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the network traffic generated by those attacks. We observed that (a) multiple
source and destination devices are associated with those reflection attacks, and
(b) a small percentage of network traffic is generated by the NTP and Net-
BIOS server reflection attacks. Our next objective is to identify the dwell time
of NTP and NetBIOS server reflection attacks. To achieve this, we obtain the
time elapsed between the start times of adjacent NetFlow records associated
with the reflection attack.

The dwell time for reflection attacks on the NTP server on days 1 to 8 are
shown in Fig. 11. From Fig. 11(a) to Fig. 11(h), we observed that the dwell
time ranged from 0 seconds to 68 seconds over eight days.

The dwell times of NTP server reflection attacks ranged from 0 seconds
to 68 seconds over eight days, indicating that the time elapsed between
reflection attacks on these NTP servers are small.

As was done with the NTP servers, we obtain the dwell time for reflection
attacks on the NetBIOS server. The dwell time on days 1 to 8 are shown in
Fig. 12. From Fig. 12(a) to Fig. 12(h), we observed that the dwell time ranged
from 0 seconds to 198 seconds over eight days.

The dwell time of NetBIOS server reflection attacks ranged from 0
seconds to 198 seconds over eight days, indicating that the time elapsed
between reflection attacks on these NetBIOS servers are small.

6 Discussion

From these results, we have shown that the LASSO, Ridge and Elastic Net
regression models are unsuitable as a means for identifying correlations of
reflection attacks. Our analysis of the NetFlow data from a large enterprise
network helps to bring awareness to the extent to which reflection attacks
are correlated. The fact that reflection attacks on these NTP servers are not
correlated and reflection attacks on these NetBIOS servers are not correlated is
not obvious. For example, the regression coefficients in the Elastic Net, LASSO
and Ridge regression models from day 1 to day 8 are close to 0 or equal to 0.
We summarize our findings and recommendations in Table 11.

We observed that the network traffic generated by these reflection attacks
did not overwhelm the NTP and NetBIOS server on all eight days. While net-
work administrators are less concerned with a reflection attack that did not
lead to a loss of network service, it is better to equip the network with reflection
attack detectors to reduce the network service downtime. These recommen-
dations are suitable for various networks as well, since complex networks
including but not limited to peer-to-peer networks and Internet-of-Things
networks can also benefit from NetFlow data analysis.
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Fig. 11 Dwell times of NTP server reflection attacks.

7 Threats to Validity

We have identified the following threats to validity: (a) internal validity and

(b) external validity.

Internal validity is concerned with the extent to which a cause-and-effect
relationship established in an empirical study cannot be explained by other
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Fig. 12 Dwell times of NetBIOS server reflection attacks.

factors [53]. Those factors are comprised of: (a) the quality of the NetFlow
data which can lead to variations in the network traffic over time, and thus
it could mislead our correlation analysis, (b) the choice of dates of NetFlow
data which can lead to selection bias, and (c) the types of data analyzed in
our study. Regarding the quality of the NetFlow data, M.M. Turcotte et al.
[51] showed that the volume of network packets captured in the NetFlow data
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Table 11 Findings and recommendations.

Finding Recommendation

Reflection attacks on the NTP Small percentages of network packets can be
and NetBIOS servers are not ignored unless a large percentage of network
correlated in the NetFlow data. packets associated with a reflection attack is

observed in the NetFlow data.

Spoofed requests triggered reflection | Network administrators can implement
attacks on the NTP and NetBIOS ingress filtering on their networks which

servers allows detection of IP packet spoofing.
The dwell times between reflection Network attack mitigation schemes can
attacks on the NTP and NetBIOS implement Anycast to scatter the attack
servers are short. traffic and absorb the attack.

The LASSO, Ridge and Elastic Net | Conducting an empirical study of various
models did not identify correlations | deep-learning techniques could improve
of reflection attacks. detection of a reflection attack.

matched the expected traffic in the enterprise network operated by Los Alamos
National Laboratories, which assured that the NetFlow data is high quality.
With respect to the dates of NetFlow data, we may have missed reflection
attacks which are not correlated. To address this issue, we randomly selected
eight days worth of NetFlow data for our analysis. On the types of data ana-
lyzed in our study, we did not consider the Windows server logs [54], hardware
performance data [55] or behaviour logs [56] as they are beyond the scope of
this paper, nor perform deep packet inspection because it would require sub-
stantial resources out of the reach of this paper. Having said that, we showed
that reflection attacks on the NTP and NetBIOS servers exist in the NetFlow
data and those reflection attacks are not correlated.

External validity is concerned with the extent to which the results pre-
sented in an empirical study can be generalized to other settings [53]. Some
data centers do not collect detailed security incident reports, and some may
not release the security logs due to privacy concerns [57]. Our conclusions are
based on the NetFlow data of a large enterprise network, and the results we
presented in our study may not generalize to other network models. Conse-
quently, this makes our statistical analysis difficult to confirm. Having said
that, network monitoring tools are currently being deployed on these networks
[58]. Therefore, validating our analysis has become attainable.

8 Conclusion and Future Work

An approach based on correlating NetFlow records in the NetFlow data is
proposed to identify correlations of reflection attacks. We showed that reflec-
tion attacks on the NTP and NetBIOS servers exist in the NetFlow data and
evaluated the Ridge, Elastic Net and LASSO regression models. We applied
the k-fold cross validation and coefficient-of-determination and ensured accu-
rate results. From our study, we learned that (a) reflection attacks on the
NTP servers are not correlated, (b) reflection attacks on the NetBIOS servers
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are not correlated, (c¢) the dwell time between reflection attacks on the NTP
and NetBIOS server is short, and (d) a small percentage of network traffic is
generated by reflection attacks on the NTP and NetBIOS server.

In our future work, we plan to apply our approach on NetFlow data
from more networks, and identify correlations of reflection attacks other than
reflection attacks on the NTP and NetBIOS servers.
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