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Federated Adversarial Learning for Robust 
Autonomous Landing Runway Detection 

Yi Li, Plamen Angelov, Zhengxin Yu, Alvaro Lopez Pellicer, Neeraj Suri 

Computing and Communications, Lancaster University, UK 

Abstract. As the development of deep learning techniques in autonomous 
landing systems continues to grow, one of the major challenges is trust 
and security in the face of possible adversarial attacks. In this paper, 
we propose a federated adversarial learning-based framework to detect 
landing runways using paired data comprising of clean local data and 
its adversarial version. Firstly, the local model is pre-trained on a large-
scale lane detection dataset. Then, instead of exploiting large instance-
adaptive models, we resort to a parameter-efcient fne-tuning method 
known as scale and shift deep features (SSF), upon the pre-trained model. 
Secondly, in each SSF layer, distributions of clean local data and its ad-
versarial version are disentangled for accurate statistics estimation. To 
the best of our knowledge, this marks the frst instance of federated 
learning work that address the adversarial sample problem in landing 
runway detection. Our experimental evaluations over both synthesis and 
real images of Landing Approach Runway Detection (LARD) dataset 
consistently demonstrate good performance of the proposed federated 
adversarial learning and robust to adversarial attacks. 

1 Introduction 

An unmanned aerial vehicle (UAV), commonly known as a drone, refers to an 
aircraft operated without a human pilot on board [1]. Drones fnd applications 
in various felds, such as photography, research, surveillance, defense, and space 
exploration. Enhancing the autonomy of aircraft is crucial as it reduces the cog-
nitive load on pilots, ensuring safety in civil aviation [2]. Despite these advance-
ments, unmanned aerial vehicles face challenges during the approach and landing 
phases. Recent progress in computer vision and embedded hardware platforms 
has positioned vision-based algorithms as an efcient direction for guiding and 
navigating during the landing stage. A vision-based landing system must be ca-
pable of detecting runways, from a distance to close proximity, in high-resolution 
images. Autonomous Landing Runway Detection (ALRD) aims to identify and 
determine a suitable runway for an aircraft to land at an airport [3]. 

While there is considerable practical and commercial interest in autonomous 
landing systems within the aerospace feld, there is currently a shortage of open-
source datasets containing aerial images. To tackle this gap, a recent introduction 
of the Landing Approach Runway Detection (LARD) dataset [4] aims to pro-
vide a collection of high-quality aerial images specifcally designed for the task 
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of runway detection during approach and landing phases. The dataset primar-
ily comprises images generated using conventional landing trajectories, where 
the possible positions and orientation of the aircraft during landing are defned 
within a generic landing approach cone. 

In recent times, signifcant advancements in deep learning techniques have 
greatly enhanced their application in vision-based ALRD, resulting in commend-
able performance gains [5][3][6]. Typically, a neural network is trained using an 
extensive dataset of vision-based landing data to predict runways at varying dis-
tances in images captured by UAV cameras. However, the vulnerability to adver-
sarial attacks in deep learning techniques poses a considerable risk in real-world 
ALRD applications. Adversarial attacks in federated learning, especially at the 
local image level, can manifest as data poisoning, data tampering, and privacy 
attacks. External attackers may inject poisoned data into local data [7]. This 
may involve introducing adversarial examples crafted to deceive the local model 
during training. Conversely, in traditional large-scale neural network-based fed-
erated learning [8][9], a computational cost issue arises where each client is re-
quired to train an individual model. However, as clients share the same task and 
data, they can potentially leverage shared features and the majority of weights. 

The contributions of this paper are summarized as follows: 
• We propose an approach based on federated learning for ALRD against 

adversarial attacks. Firstly, we pre-train a neural network on a large-scale lane 
detection dataset [10]. Next, the network is fne-tuned with paired images, i.e., 
clean and adversarial images in M clients. 
• Difering from conventional large-scale model-based federated learning [8][9], 

the weights of the proposed pre-trained model are frozen. In each client, we scale 
and shift the deep features (SSF) to leverage the representation abilities of large-
scale pre-training models to achieve good performance on downstream tasks by 
fne-tuning a few trainable parameters. 
• Distributions of clean local data and its adversarial version are disentan-

gled for accurate statistics estimation. Consequently, deep features of paired 
images are jointly learned at each layer of the local model for the model to learn 
downstream information from adversarial images. 

2 Related Works 
2.1 Deep Learning for ALRD 

The development of methods for detecting landing runways is pivotal for ensuring 
the security of autonomous aerial systems. These methods can be broadly catego-
rized into two main approaches based on the data type: conventional image pro-
cessing and deep learning-based image processing, video processing, multi-sensor 
fusion, and end-to-end learning. Firstly, conventional image processing involves 
techniques that manipulate and analyze images using traditional, rule-based 
algorithms such as edge detection [11], contour analysis [12], and color-based 
segmentation [13]. Secondly, deep learning-based techniques [5][6] have been de-
veloped and applied in image processing to improve the accuracy of aerial image 
detection. Finally, in contrast to conventional feature learning methods, some 
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recent deep learning techniques [14] learn a mapping from raw sensor inputs 
to runway detection without explicit feature engineering. While these methods 
achieve high runway detection accuracy over image- or video-based datasets, 
they face three signifcant challenges [3]: 1) variable groundtruth sizes over pa-
rameters, e.g., along track distance and vertical path angle, 2) robustness to 
adversarial attacks, 3) low execution time and computational costs. 

2.2 Adversarial Attacks 

Recent studies have highlighted the susceptibility of trained neural networks to 
compromise through adversarial samples, even with imperceptible perturbations 
that evade human detection [15]. This raises signifcant safety concerns regarding 
the deployment of such networks in real-world applications, including critical 
domains like autonomous driving and clinical settings [16]. 

The threat model categorizes existing adversarial attacks into three types: 
white-box, gray-box, and black-box attacks, difering in the level of knowledge 
possessed by adversaries [17]. Within these threat models, various attack al-
gorithms for generating adversarial samples have been proposed, including the 
Fast Gradient Sign Method (FGSM) [18], Projected Gradient Descent (PGD) 
[19], Semantic Similarity Attack on High-Frequency Components (SSAH) [20], 
Carlini & Wagner (CW) [21], DeepFool [22][23], Basic Iterative Method (BIM) 
[24], and Jacobian-based Saliency Map Attack [25]. 

2.3 Federated Learning 

Federated learning is a distributed machine learning approach that enables mul-
tiple clients to train a model collaboratively by using their local data without 
sharing [26]. A key characteristic of federated learning is that the training pro-
cess takes place locally on each device. Instead of sharing raw data, only model 
updates are exchanged among the devices throughout the training process [27]. 
This mechanism efectively reduce the risk of data exposure, making it a privacy-
preserving approach for collaborative model training over devices [28]. 

Most existing federated learning methods achieve promising performance over 
a wide range of tasks. However, these methods have two limitations. Firstly, 
[29][30][31] have shown that local data can be vulnerable to adversarial attacks. 
If an adversary can inject malicious data during the training phase, they may 
subtly alter the model’s behavior. This could lead to vulnerabilities that can be 
exploited during inference. Secondly, the number of parameters of pre-trained 
models is usually very large [32][33], and simply fne-tuning the full model un-
doubtedly yields a huge amount of communication cost in federated learning 
algorithms. These limitations are addressed by the proposed federated learning 
pipeline in this work. 

3 Proposed Approach 

3.1 Preliminaries 

In this section, we discuss the training of the proposed federated learning frame-
work in subsections. The overall framework is presented in Fig. 1. In the fed-
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erated learning framework, we assume there are M local clients, where each of 
them has their local dataset Dm containing clean samples Cm and adversarial 
samples Am. The distributed paradigm FL aims to learn a central model with 
the parameter θc over the whole training data D = {D1, D2, . . . , DM } using a 
central model without exchanging local private data. Formally, such a process 
can be expressed as: 

arg min L(θc) = 
θc 

M 

m=1 

|Dm| Lm(θc)|D| 
(1) 

where the number of samples in D is presented as |D|. Lm(θc) is the empirical 
loss of the client m which can be expressed as: 

Lm(θc) = E(x,y)∈Dm Lm(x; θc) (2) 

where x denotes an image sample with the ground truth y of dataset Dm . Lm 

denotes the local loss term, e.g., cross-entropy loss. 

Fig. 1. Proposed pipeline of the federated learning-based landing runway detection 
method. The local models are initially pre-trained using lane detection datasets and 
subsequently fne-tuned with local landing runway detection datasets. The trained Scale 
and Shift Features (SSF) pools are then aggregated into the fnal model on the server. 

3.2 Pre-training 

Recent landing runway detection techniques leverage deep learning, but the mod-
els in the existing literature are comparatively smaller than state-of-the-art mod-
els such as Vision Transformer (ViT) [34] and YOLO [35]. To address this, we 
propose fne-tuning a large-scale model pre-trained on a similar feature type-
based dataset, such as lane detection datasets. This choice is motivated by the 
similarity between driving lanes and landing runways at the feature level. Specif-
ically, we use a ViT-L/16 model [34] pre-trained on a road image dataset [10] 
to better extract features from our landing runway dataset. In the diagnostic 
experiment, detailed analysis of the chosen backbone, ViT-L/16, is provided. 
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3.3 Local Model Fine-tuning 

The pre-trained model is then fne-tuned with airport aerial images from [4] to 
learn task-specifc knowledge. However, there are two challenges in this stage. 
Firstly, pre-trained model usually has a large number of model parameters. Di-
rect fne-tuning the full model consequently gives rise to signifcant communica-
tion costs between the server and the client. Secondly, recent studies show that 
adversarial attacks potentially poison the local data. This causes wrong predic-
tions in autonomous landing systems. Therefore, we aim to mitigate these two 
challenges by using SSF and adversarial feature learning, respectively. 

Scale and Shift Deep Features To efciently fne-tune each local model, 
we scale and shift the deep features (SSF) the pre-trained model in the local 
training phase and merge them into the original pre-trained model weights by 
reparameterization in the inference phase. Given a pre-trained model with pa-
rameter θ, we send the model to each local client and the defne the parameter 
as θm in the m-th client. In the fne-tuning stage, the model parameters of SSF 
can be represented as θm = {γm, βm, hm, θm}, where γm ∈ RD and βm ∈ RD 

are scale and shift factors, respectively [36]. hm is the parameter of the classi-
fcation head. We break the weights of local models based on operations [36], 
e.g., multi-head self-attention (MSA), MLP and BN, etc. Then, we remodulate 
features by inserting SSF with γm and βm factors after these operations. It is 
highlighted that the pre-trained weights are kept frozen, and only the SSF and 
classifcation head are kept updated. Therefore, we defne parameter ϕm and ϕc 

as the combination of trainable {γ, β, h} in the m-th local model and central 
model, respectively. ϕc can be updated with Eq. (1) as: 

M |Dm|
ϕc = arg min L(ϕm) = Lm(ϕm) (3) 

ϕs |D| 
m=1 

where ϕs are the set of SSF, i.e., ϕ1, ϕ2, ...ϕm. In each client, we updates ϕm in 
the r-th communication rounds between the server and local clients as: 

ϕr,e+1 ← ϕr,e m m , ; ϕr,e − ηm∇Lm (x , a ) (4)m m m 

where e is the index of local updates and ηm is the learning rate. Once the local 
model training is accomplished, ϕs can then be merged into θm to obtain the 
updated model parameter θ ′ . Besides, the server performs aggregation every m 
communication round by receiving the updated parameters of local clients after 
the local updates within each round. Formally, we have 

M 
ϕe+1 |Dm| 

ϕe← (5)c m|D| 
m=1 

Similarly, once all the communication rounds are accomplished, ϕcs can then be 
merged into θc to obtain a robust central model parameter without disclosing 
any local data. 
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Adversarial Feature Learning In recent studies [37][38][39], clean and ad-
versarial images have diferent underlying distributions because the adversarial 
images essentially involve a two-component mixture distribution. Therefore, in 
the proposed adversarial feature learning, we aim to disentangle features from 
the clean and adversarial images to enhance the global feature representation 
and suppress the adversarial attacks. To achieve that, we generate adversarial 
images from the clean images by using the attack algorithms, e.g., FGSM. Then, 
these paired clean and adversarial image samples are fed into the proposed ad-
versarial feature learning (AFL) block. Due to diferent underlying distributions 
of clean and adversarial images, diferent from conventional adversarial image 
learning techniques [40], we exploit diferent normalization techniques for clean 
and adversarial images to guarantee its normalization statistics are exclusively 
preformed on the adversarial images. Particularly, the batch normalization (BN) 
[41] and random normalization aggregation (RNA) [42] are empirically used for 
clean and adversarial images, respectively. The support experiments for the cho-
sen experiment confguration will be provided in Section 4.5. 

The loss between clean and adversarial images at the m-th client is defned: 

 
Lm = ∥(γcl ⊙ x 

N
1 m

n + βcl) − (γadv ⊙ a mn + βadv∥22 (6)
N 

i=1 

where N is the number of samples in a local client. The clean and adversarial 
samples are denoted as xm

n and amn , respectively. Except BN and RNA, clean 
and adversarial sample parameters γcl, βcl, γadv, and βadv for convolutional and 
other layers are jointly optimized for both adversarial examples and clean images. 
Specifcally, the AFL with an RNA helps to learn the features by keeping separate 
BNs to features that belong to diferent domains. 

3.4 Central Model Update 

When the training is accomplished, we can re-parameterize the SSF by merging 
it into the original parameter space (i.e., model weight θ). As a result, federated 
SSF is not only efcient in terms of communication costs, but also does not 
introduce any extra parameters during the inference phase. The algorithm of the 
proposed federated adversarial learning framework is presented in Algorithm 1. 

4 Experimental Results 

4.1 Dataset and Attacks 

The tvtLANE dataset [10] contains 19,383 image sequences for lane detection, 
and 39,460 frames of them are labeled. In this work, the model is pre-trained with 
randomly selected 35,000 images from the dataset. We further fne-tune the local 
models on synthetic and real runways from the LARD dataset [4]. The LARD 
dataset contains 14,433 training images of resolution 2448×2648, taken from 32 
runways in 16 diferent airports in total. In the training stage, we set number 



       

     
                     

            
     

 

       

   
        
          
          

    
 

       
   

        
  

   
          

  
  

 
 

 
 

 

   
   

 

   
    

 
   

    
  

              
               

             
            

    
            

          
            

     

            
          

          
         

            
           

        
        

           
            
            

            
            

           

   

             
            

7 Title Suppressed Due to Excessive Length 

Algorithm 1 Federated adversarial learning 
1: Input: Local datasets of M clients: D = {D1, D2, . . . , DM }, clean samples x m , ad-

versarial samples a m , maximum local update E, communication rounds R, learning 
rate ηm, learnable parameters ϕr,e 

m 

2: Output: The fnal central model θc 

3: Initialize SSF 
4: for e = 1, ..., E do 
5: for m = 1, ..., M in parallel do 
6: Download from the central model to local models: ϕr,e ← ϕe 

m c 

← ϕr,e m m; ϕr,e 7: Local model updates in clients: ϕr,e+1 − ηm∇Lm (x , a )m m m 

8: end for M |Dm|9: Update local models to the central model: ϕe
c 
+1 ← ϕm

e 
m=1 |D| 

θe+1 = ϕe+110: c c 

11: end for 
12: SSF Aggregation: θc =Agg(θc 

1, θc 
2, ..., θc

E ) 

of clients to 5, and randomly select 2,800 for each client. Then, we construct 
the validation set with the rest 433 images. In the test stage, we evaluate the 
central server with 2,221 synthetic images taken from 79 runways in 40 diferent 
airports and 103 hand-labeled pictures from real landing footage on 38 runways 
in 36 diferent airports. 

We select aforementioned attacks in Section II because they are robust to 
novel adversarial attack recovery techniques [17][43]. The adversarial images in 
the training and test stages are generated with the same attack algorithm. 

4.2 Competitors and Performance Measure 

In this paper, the proposed method is evaluated and compared to state-of-the-art 
competitor models. Firstly, we select four landing runway detection techniques, 
including long short-term memory (LSTM) [44], Line Segment Detector (LSD) 
[5], Runway Detection Systems (RDS) [6], Complex Cross-Residual Network 
(CS-ResNet) [45] as the original implementations in the literature but with same 
data as the proposed method. Secondly, we use four federated learning frame-
works, including Siloed Batch Normalization (SiloBN) + Adaptive Sharpness-
Aware Minimization (ASAM) [46], federated optimization (FedProx) [47], feder-
ated averaging (FedAvg) [26], and federated local drift decoupling and correction 
(FedDC) [48] which are state-of-the-art in image processing tasks to confrm the 
proposed model is robust to adversarial attacks. For a fair comparison, we re-
produce these models with same data as the proposed method. We calculate 
the average error between 6 predictions and ground truths (e.g., along track 
distance, vertical path angle, lateral path angle, yaw, pitch, and roll). 

4.3 Model Confguration 

We pre-train a Vit-L/16 model [34] as the backbone by using PaddleSeg toolkit 
[49]. The backbone study is presented later in diagnostic experiments. The model 
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is trained by using the SGD optimizer with a weight decay of 0.0001, a momen-
tum of 0.9, and a batch size of 256. We train the model for 300 epochs. The 
initial learning rate is 0.03, and is multiplied by 0.1 at 500 and 1000 epochs. 

After the pre-training, we only fne-tune the SSF layers and freeze the other 
weights of the Vit-L/16 model. In particular, we fne-tune the model for 100 
epochs. All experiments are run on the High End Computing (HEC) Cluster 
with Tesla V100 GPUs. 

4.4 Comparison to State-of-the-Arts 

We conduct two experiments in this section. In the frst experiment, we assume 
the federated learning perfectly protect the data privacy. Therefore, the central 
model is evaluated with clean samples of LARD [4]. Table 1 shows the results, 
each of them is the average of 2,221 synthesis images or 103 real images. In 
the second experiment, we evaluate the performance over adversarial data and 
present the results in Fig. 2(2). 

Table 1. Detection error comparison with ALRD and federated learning methods on 
the clean samples of LARD dataset. Para. denotes the trainable parameters. 

Method FL Para. (M) Synthesis (%) Real (%) 
LSD [5] 

LSTM [44] 
RDS [6] 

CS-ResNet [45] 

✗ 
✗ 
✗ 
✗ 

25.6 
0.5 
38.9 
58.2 

28.6 
28.0 
25.2 
22.8 

37.5 
35.8 
34.1 
31.9 

FedAvg [26] 
FedProx [47] 
FedDC [48] 

SiloBN + ASAM [46] 

✓ 
✓ 
✓ 
✓ 

1.7 
53.2 
11.2 
4.5 

29.5 
26.1 
25.0 
24.8 

37.6 
35.2 
35.0 
32.6 

Ours ✓ 7.4 19.5 26.3 

Table 1 shows that our federated adversarial learning improves results over 
landing runway detection models and federated algorithms. Our model is 3.3 
points lower than CS-ResNet (19.5% vs. 22.8%). We conduct more experiments 
to confrm this point in Fig. 2. Adversarial images are generated from clean 
samples of LARD [4] for the model training and evaluation. Fig.2 (a) shows the 
results, each of them is the average of 15,547 (2,221 synthesis samples) synthesis 
images or 721 (103 real samples × 7 attack algorithms) real images. 

From Fig.2(a), it can be observed that in all the evaluated models, the pro-
posed model achieves 21.4% and 29.0% for synthesis and real images detection, 
respectively, which ofers the best efectiveness. These observations are consistent 
with clean images. Moreover, comparing the results to Table 1, competitor mod-
els sufer a signifcant accuracy degradation with adversarial attacks, while the 
proposed models perform more robust because the global feature representation 
is enhanced to suppress the adversarial attacks. 
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Fig. 2. Detection error comparison (a) to competitor models (b) against number of 
clients over LARD. 

4.5 Diagnostic Experiment 

In this section, we frst conduct experiments to validate several intriguing prop-
erties, e.g., backbone. Then, we study the efcacy of our core ideas and essential 
pipeline design. 

Number of Clients We conducted experiments to demonstrate the trade-of 
between performance improvement and network depth, specifcally, varying the 
number of proposed PAA blocks. Fig. 2(b) presents these results, with each data 
point being an average of 15,547 (2,221 synthesis samples × 7 attack algorithms) 
synthesis images or 721 (103 real samples × 7 attack algorithms) real images. 

Fig. 2(b) compares detection error against the number of clients on LARD. 
As Fig. 4 shows, detection errors start to decrease from M = 2, but performance 
is fairly stable for 5 ≤ M ≤ 7. Therefore, the results indicate that M = 5 ofers 
the best trade-of, validating the chosen implementation setting. 

Backbone We implement the proposed federated learning framework with dif-
ferent backbones. The backbones are pre-trained on the tvtLANE dataset [10] 
and fne-tuned in clients. The experimental results are provided in Table 2. Each 
result of them is the average of 15,547 (2,221 synthesis samples × 7 attack al-
gorithms) synthesis images or 721 (103 real samples × 7 attack algorithms) real 
images. 

Table 2 compares the detection error against backbone networks on LARD. 
The results indicate that: 1) Although the ViT family requires massive network 
parameters, the SSF signifcantly reduces the parameters, which facilitates the 
training; 2) ViT-L-16 with SSF ofers the best trade-of between the detection 
performance and computational cost, supporting the chosen experiment confg-
uration. 

Normalization Techniques A diagnostic experiment of normalization tech-
niques including BN [41], layer normalization (LN) [54], instance normalization 
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Table 2. Backbones. 

Para. (M) Error (%) 
Backbone SSF Synthesis Real 

ResNet50 [50] 25.6 - 28.5 36.8 
ResNet101 [50] 42.8 - 28.1 35.6 
ENet-B3 [51] 12.0 - 25.8 39.1 
ENet-B5 [51] 30.6 - 24.7 38.0 
ENet-B7 [51] 66.0 - 24.0 36.3 

WRN-50-2 [52] 68.9 - 29.7 38.2 
WRN-101-2 [52] 126.8 - 28.0 35.6 

VGG16 [53] 138.3 - 31.4 42.9 
ViT-S-16 22.0 3.96 26.6 35.8 
ViT-B-16 86.5 4.62 23.0 33.1 
ViT-L-16 307.1 7.39 21.4 29.0 

Table 3. Normalization techniques. 

Adversarial 
BN LN IN GN RNA 

Clean 

BN 
LN 
IN 
GN 

RNA 

27.5 31.9 38.2 36.8 23.4 
32.6 34.7 40.6 31.2 33.3 
35.9 41.2 40.5 30.7 29.8 
30.4 29.8 35.7 29.1 31.8 
25.8 29.5 34.2 33.9 25.9 

(IN) [55], group normalization [56], and RNA [42] for clean and adversarial im-
ages is conducted on the LARD dataset. Each result in Table 3 is an average of 
16,268 experiments (2,221 synthesis samples × 7 attack algorithms + 103 real 
samples × 7 attack algorithms). 

According to Table 3, BN and RNA are optimal for clean and adversarial 
image features, respectively. The detection error achieves 23.4% at the valley, 
which supports the experiment confguration. 

Ablation Study In this section, we investigate the efectiveness of each contri-
bution based on the LARD dataset. The ablation study is presented in Table 4 
and the experimental setting is the same as Section 4.4. Each result is the aver-
age of 15,547 (2,221 synthesis samples × 7 attack algorithms) synthesis images 
or 721 (103 real samples × 7 attack algorithms) real images. 

Table 4. Ablation study in the proposed method. af and f denote adversarial feature 
learning and federated learning, respectively. 

Ablation Settings 
Para. (M) Synthesis (%) Real (%)

AFL FL SSF 
✗ ✗ ✗ 307.1 52.5 59.1 
✓ ✗ ✗ 307.1 31.6 38.3 
✗ ✓ ✗ 1535.5 44.2 50.7 
✗ ✗ ✓ 1.5 52.3 59.0 
✗ ✓ ✓ 7.39 43.9 48.5 
✓ ✗ ✓ 1.5 34.8 42.6 
✓ ✓ ✗ 1535.5 21.5 29.5 
✓ ✓ ✓ 7.39 21.4 29.0 

Initially, we evaluate the efectiveness of AFL, which plays a pivotal role 
in learning desired features from adversarial images. AFL demonstrates its sig-
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nifcant impact within the federated learning framework and SSF, resulting in 
a remarkable performance improvement from an initial error rate of 43.9% to 
21.4%. This improvement can be attributed to the enhanced global feature rep-
resentation provided by AFL, efectively suppressing adversarial attacks. 

Moreover, the detection error experiences a signifcant reduction by exploiting 
federated learning framework (i.e., 34.8% → 21.4%, synthesis images). The SSF 
aggregation captures diverse features learned from diferent local clients and 
data, empowering the central client to make more accurate predictions through 
the assimilation of rich features. 

The fnal experiment in the ablation study involves the addition of SSF. Con-
sequently, federated SSF not only prove to be efcient in terms of communication 
costs but also do not introduce any extra parameters during the test stage. 

4.6 Visualizations 

In this section, we present qualitative results demonstrating the landing runway 
detection of attacked image samples on LARD [4] in Fig. 3. 

Fig. 3. Qualitative landing runway detection results on LARD. From left to right: orig-
inal images, images attacked by FGSM, results of the central model without adversarial 
training, results of the central model. 

After comparing the reconstructed images with the original and attacked 
images, it can be observed that the detection boxes obtained via the proposed 
model with adversarial training provide more accurate descriptions of the landing 
runway areas. This observation further confrms the efcacy of the proposed 
method. 
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5 Conclusion 

In this paper, we have proposed a federated adversarial learning framework as 
a simple yet efective alternative to conventional landing runway detection algo-
rithms. To efciently fne-tune the pre-trained local model on clients, we utilize 
a technique of shifting and scaling features with both clean and adversarial 
samples. Subsequently, the SSF pools are aggregated into the central model. 
Our evaluation on LARD has demonstrated the high efciency and efectiveness 
of the proposed model through the use of qualitative results and quantitative 
results which includes detection error comparison between ALRD and FL, difer-
ent backbones, diferent normalisation techniques and lastly a thorough ablation 
study amongst others. 
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