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Abstract—This paper presents a Distributed NMPC approach
for the problem of Dynamic Obstacle Avoidance based on
Laguerre Polynomials combined with potential fields. The pro-
posed approach aims at tackling the computational burden
by using a combination of different methods to achieve real-
time performance. Moreover, the approach benefits from being
able to represent the projected paths of each UAV using a
significantly reduced amount of information, thus reducing the
bandwidth required for a practical implementation. The paper
presents a complete derivation of the proposed approach along
with an algorithm for its implementation, and discusses aspects
specifically related to Multi-Rotor UAV models which can help to
reduce the computational burden even further. The performance
of the proposed approach is demonstrated through a simulation
of 50 UAVs sharing common airspace.

Index Terms—Nonlinear Model Predictive Control (NMPC),
Parametric Curves, Distributed Control Systems, Obstacle Avoid-
ance, Potential Field, Unmanned Aerial Vehicles (UAVs)

I. INTRODUCTION

Over the recent years, Unmanned Aerial Vehicles (UAVs),
sometimes called drones, have become increasingly popular
thanks to their wide range of potential applications such
as aerial inspection, search and rescue, package deliveries,
autonomous agriculture, and so on. However, although in-
dustry is looking forward to introduce them into society,
many technical challenges still prevent their safe operation
which makes them fundamentally unable to be completely
trustworthy. One of these challenges is that of path planning
and collision avoidance. Unlike conventional industrial robots
which operate in a relatively controlled/known environment
for which solutions can be found prior to them executing their
tasks, UAVs must be able to operate safely in complex and
rapidly evolving dynamic environments. This requires them
to be able to make accurate and complex decisions in real
time, adjusting their paths according to the current (and in
some cases future) state of the environment. Additionally, they
often must be able to execute some relatively complex task
whilst ensuring this safety property at all times which pose an
additional layer of difficulty.
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Although there exist a wide range of methods to tackle
the obstacle avoidance problem, Nonlinear Model Predictive
Control (NMPC) has recently gained a significant amount of
interest, in part thanks to the recent advances in computational
power. Its popularity comes mainly from its generic ability to
tackle complex dynamical systems by solving Optimal Control
Problems (OCPs) in real time. It’s basic operation relies on
finding a plan over a given prediction horizon at each sampling
time, but only applying the first part of the sequence, thus
giving the vehicle a natural “re-planning” ability [1]. Various
works based on this type of approach have been proposed in
recent years. Authors from [2] discussed how the use of NMPC
can integrate both path planning and tracking in a systematic
way, something which is often tackled separately. The work
from [3] presented a trajectory planning algorithm under
positioning accuracy constraints. In [4], a sensor-based task
constrained MPC approach is proposed which uses informa-
tion from a dual-depth camera on a robotic system for motion
planning. Similarly, work from [5] proposed a path planning
and obstacle avoidance approach for UAVs using information
from a depth camera. To obtain real-time performance, work
from [6] proposed an auto-generated NMPC algorithm for
real-time obstacle avoidance of ground vehicles.

Most of the studies presented above have been done consid-
ering a single vehicle or “agent” interacting with a dynamic
environment. However, the challenge is significantly increased
when a multi-agent system is considered, in particular when
considering how they interact and share information. Work
from [7] presented a multi-robot distributed NMPC formation
combining potential field methods with a modified A* algo-
rithm to avoid singularities. In [8], a distributed MPC is used
for formation of multi-agent systems with collision avoidance
and agreement constraints. Most of these works rely on ad-hoc
communication between the UAVs. However, an interesting
alternative was discussed in [9]; a Legible MPC approach for
autonomous driving where the control system is proposed to
make its control actions “legible” by an external observer,
which could serve as a “decentralised backup strategy” for
UAVs in case of loss of communication.



This paper presents a Laguerre-based Distributed NMPC
which tackles the computational burden by using input-
parameterised optimal solutions combined with a potential
field approach to tackle the dynamic obstacle avoidance prob-
lem. Although works from [1], [10] have presented simi-
lar use of parametric curves, the proposed approach differs
from all the above in the sense that it is implemented in a
distributed multi-uav fashion. Moreover, we present a multi-
rotor UAV scenario where by using simplified dynamics, the
computational burden can be reduced further, thus enhancing
its potential for real-time applications. The efficacy of the
proposed approach is presented with simulations of up to 50
UAVs sharing common airspace whilst satisfying the safe-
distance constraints.

The paper is organised as follows: Section II presents the
details of the proposed approach in 3 subsections, namely: II-A
Input-Parameterised NMPC, II-B Dynamic Obstacle Avoid-
ance and II-C Distributed NMPC, and provides a general
algorithm for its implementation in section II-D. Section III
presents a simulation of the proposed applied to a simplified
UAV model presented in III-A, and discusses its impact in
the computational burden of the proposed algorithms. Finally,
section IV emits conclusions and discusses future work.

II. LAGUERRE-BASED DISTRIBUTED NONLINEAR MODEL
PREDICTIVE CONTROL

In this section we will present the proposed approach by
introducing 3 main sub-parts, namely: input-parameterised
NMPC, dynamic obstacle avoidance and distributed NMPC
optimisation. For reference, the approach will follow closely
the notation and derivations presented in [11].

A. Input-Parameterised Nonlinear Model Predictive Control

Let us begin by introducing the basic objective function
representing the input-parameterised NMPC defined by:

J = (Xr−X̂)TQ(Xr − X̂) + (Ur − Û)TR(Ur − Û) (1a)
st. x̂k = x0 (1b)

x̂k+i = f(x̂k+i−1, ûk+i−1) ∀i = [1, ..., Np] (1c)

Û = Nη̂ (1d)

Xmin ≤ X̂ ≤ Xmax (1e)

Umin ≤ Û ≤ Umax (1f)

where Q > 0 ∈ RNpnx×Npnx and R > 0 ∈ RNpnu×Npnu

are positive definite matrices for penalizing state and input
errors, respectively, with Q typically selected as a block
diagonal matrix (Q = blkdiag([qk+1, qk+2, . . . , qk+Np ])),
qk+Np

sometimes referred to as the terminal weight, and R
typically selected as a diagonal matrix with a constant value
(R = ruI

Npnu×Npnu ); Xr = [xT
rk+1

, xT
rk+2

, · · · , xT
rk+Np

]T ∈
RNpnx , X̂ = [x̂T

k+1, x̂
T
k+2, · · · , x̂T

k+Np
]T ∈ RNpnx ,

Ur = [uT
rk
, uT

rk+1
, · · · · · · , urk+Np−1

]T ∈ RNpnu , Û =

[ûT
k , û

T
k+1, · · · , ûT

k+Np−1]
T ∈ RNpnu are future state ref-

erences, states, input references and inputs column-vectors,
respectively; (1b) is the initial condition; (1c) are the state

dynamics; (1d) is the input-parameterisation equality with
η̂ ∈ RNηnu begin the parameterised decision vector, and
N ∈ RNpnu×Nηnu begin the input-parameterisation matrix;
and (1f) and (1e) are the inputs and state constraints, with
Xmax/Xmin ∈ RNpnx and Umax/Umin ∈ RNpnu .

Note that this basic objective function may be modified in
later stages when the obstacle avoidance terms are included,
as well as when the optimisation is set in a distributed fashion,
or in case terminal conditions are required. Moreover, further
details related to the input-parameterisation equation (1d) will
be discussed later in this section.

By taking a single-shooting approach, simulating the system
over a “nominal/guessed” input vector Ū ∈ RNpnu to obtain a
“nominal” state trajectory X̄ ∈ RNpnx and linearising over the
resulting trajectories using first-order Taylor Series expansion,
the following models can be derived:

Û = Nη = Ū + δÛ (2a)

X̂ = X̄ +HδÛ = X̄ +H(Nη − Ū) (2b)

where H ∈ RNpnx×Npnu is defined as:

H =


h1,1 0 · · · 0

h2,1 h2,2
. . .

...
...

. . . . . . 0
hNp,1 hNp,2 . . . hNp,Np

 (3)

with the inner terms defined by the recursive expression:

hk,j =

{
Bk−1 k = j

Ak−1hk−1,j k > j
(4)

and:
Ak =

∂f(x̂k, ûk)

∂δx̂k
Bk =

∂f(x̂k, ûk)

∂δûk
(5)

By substituting equations (2a) and (2b) in cost function
(1), rearranging in terms of the decision variable (η̂), and
disregarding constant terms, the following standard Quadratic
Program (QP) can be obtained:

J = η̂TEη̂ + 2fT η̂ st. Mη̂ ≤ γ (6a)

E = NT (HTQH +R)N (6b)

f = −NT
[
HTQ(Xr − X̄ −HŪ)−R(Ū − Ur)

]
(6c)

M =


HN
−HN
N
−N

 γ =


Xmax − X̄ +HŪ

−(Xmin − X̄ +HŪ)
Umax

−Umin

 (6d)

where E ∈ RNηnu×Nηnu is the Hessian; f ∈ RNηnu is the
linear term; and M and γ are the constraints matrix and vector,
respectively.

An important term to consider here is the matrix multi-
plication HN = HN which can be used to simplify some
of the expressions above, as well as to reduce some of the
computational burden and memory usage as discussed in [11].
This results in an expression of the form:

HN =
[
(hN)

T
1 (hN)

T
2 · · · (hN)

T
Np

]T
(7)



with:

(hN)k =

{
Bk−1Nk−1 k = 1

Ak−1(hN)k−1 +Bk−1Nk−1 k > 1
(8)

where Nk−1 is the input-parameterisation matrix related to the
kth time-step.

By following a Sequential Quadratic Programming (SQP)
approach and repeatedly solving the aforementioned QP to
obtain a “new nominal/guess”, the solution will eventually
lead to the local optimal around the starting solution. Further
details regarding starting solution will be discussed later in
this section. Moreover, it should be noted that although the
proposed approach in this paper relies on a single-shooting
optimisation, an equivalent multiple-shooting formulation can
be obtained as derived in [11].

Once the solution for the parameterised vector (η̂) is found,
the original decision variable can be recovered using the
original equality (1d). Only the first input is sent to the system
and the process is repeated in the following time-step which
is the well known receding horizon strategy. The resulting
optimum can then be shifted to “hot-start” the initial guess at
the next sampling time as performed in the Real-Time Iteration
(RTI) Scheme [12]. Finally, to achieve real-time performance,
only a single SQP iteration is typically computed [12].

1) Laguerre Polynomials: In this work, the well-known
Laguerre Polyonimals were used as the input-parameterisation
basis function which have been studied in various works such
as [11], [13], [14]. It is important to note that although the
current work focuses on their particular implementation, any
type of input-parameterisation such as Kautz Polynomials [15],
Chebyshev Polynomial [11], B-Spline curves [10] and Move-
Blocking [11] may be used. An important benefit of them
are their simple recursive nature which results in them having
recursive feasibility properties [14]. Moreover, their decaying
properties may have an important part when defining obstacle
avoidance trajectories given they can essentially be used to
represent a momentary deviation which will quickly dissipate,
thus giving a predictable behaviour after the obstacle has been
avoided or in case of loss of communications between the
UAVs. Indeed, work from [15] discussed how they can be
combined with optimal feedback control to limit their effects
only for constraint handling. Lastly, they have been shown
to give competitive performance in [11] when appropriately
tuned whilst ensuring smooth control actions.

Considering linear independence between the parameteri-
sation of each input, ie. each input of the system having
its own polynomial, as opposed to other type of input-
parameterisations such as control allocation [16], the Laguerre
Polynomials of each input at each time step are given by:

L(1)
L(2)

...
L(NL)


k+1

=


aL 0 · · · 0

β aL
. . .

...
...

. . . . . . 0

(−aL)
NL−2β

. . . . . . aL




L(1)
L(2)

...
L(NL)


k

(9)

where aL is the decay-rate, typically selected based on the
desired settling time, β = (1− a2L) and NL is the number of
Laguerre coefficients.

By taking L0 =
√
β
[
1 −aL · · · (−1)NL−1aNL−1

L

]T
as an initial condition and iterating system (9) forward Np

times, the Laguerre Polynomials of each input can then
be combined appropriately to give an input-parameterisation
matrix (N) of the form:

N =



(L1
0)

T 0 · · ·
...

. . .
...

· · · 0 (Lnu
0 )T

...
...

...
(L1

Np−1)
T 0 · · ·

...
. . .

...
· · · 0 (Lnu

Np−1)
T


=

 N0

...
NNp−1

 (10)

where the notation (Li
k) indicates the input-parameterisation

of the ith input, at the kth time step. Note that a different
decay-rate aL may be selected for different inputs if desired.

We will discuss later how this type of input-parameterisation
can have an impact for communications when implementing
the proposed approach in a distributed fashion.

B. Dynamic Obstacle Avoidance

One of the benefits of predictive controllers is their inherent
ability to anticipate future events to take appropriate actions
which often result in smoother control actions when compared
to non-predictive schemes. Although there exist a wide range
of approaches to tackle this problem, two of the main methods
that have been used for it are potential fields such as [7], and
distance constraints such as [8], each one having their own
advantages and disadvantages. As an example, the solution
from a potential field approach will often be sub-optimal
when compared to distance constraints given they have an
overall effect on the cost function even when the obstacle
might not even violate the safe-distance constraint. On the
other hand, solving a constrained problem might increase the
computational burden significantly.

As we are looking to propose a real-time capable approach,
this paper uses a potential field approach. Although one might
choose a squared potential field term as in [7], this work uses
a linear potential term described by:

P̂ i
k =

kpot

(d̂k)i − dmin

(11)

where P i
k is the potential field of the ith obsta-

cle at time k, kpot is a tuning weight to adjust the
potential field’s effect on the overall cost, (d̂k)i =√
(x̂k − x̂obsik

)2 + (ŷk − ŷobsik)
2 + (ẑk − ẑobsik)

2 is the dis-

tance between the UAV and the ith obstacle at time-step k, and
dmin is the minimum safe-distance that must be maintained
to the obstacle, typically selected as the summation of the
safe-radius of both UAVS, eg. dmin = rUAV1

+ rUAV2
.



Note that this term can include any type of obstacles as
long as they have a predictable trajectory over the prediction
horizon. As an example, one might include the trajectory of
an incoming projectile following a simple parabolic trajectory.

Having defined this, the overall cost (1) can then be modi-
fied to include this term as:

Jtotal = J + Jpot = J +min

Nobs∑
i=1

 Np∑
k=1

P i
k

 (12)

To apply this, we can formulate an output linearised prediction
model of the potential fields of each obstacle using the nominal
trajectory (X̄) obtained with the nominal input (Ū ) as:

Ŷi = Ȳi + (HN)iη̂ (13)

where (HN)i is defined as:

(HN)i =


C1,i 0 · · · 0

0 C2,i
. . .

...
...

. . . . . . 0
0 · · · 0 CNp,i

HN (14)

with Ck,i =
∂Pk

∂x̂k
being the output matrix.

Because the overall term is only of first order nature, the
effect of each obstacle at each time-step can be included by
adding the columns of (HN)

T
i for all obstacles i = [1, Nobs]

to the linear term (f ), resulting in:

ftotal = f +

Nobs∑
i=1

[
(HN)

T
i 1

Np
]

(15)

with 1
Np being a vector of ones of size Np.

This will have an impact on reducing the overall com-
putational burden of the proposed approach which will be
discussed later in the simulation section III.

An important thing to notice here is that because the NMPC
relies on continously “guessing” and optimising around the the
nominal trajectories, there exist the possibility that a “new”
obstacle with a imminent collision path is introduced in the
prediction horizon and enters the “dangerous-zone” depicted
in yellow in figure 1.

This can ultimately cause a number problems, especially
when linearising around it. As an example, if the obstacle
comes close to the limit dmin, the solution might become
numerically unstable, or make the linearised model consider a
very agressive maneouver is required. On the other hand, if the
obstacle happens to pass the limit, ie. predicting a collision,
the minimisation of the potential field term would push the
solution to go to the limit itself, rather than pushing it away
from it. Finally, although the exact expression for Ck,i matrix
will depend on the arrange of the state vector xk and the
respective 3D (x, y, z) axis, the linarisation expression for a
given axis at a given time-step, eg (wk) will be given by:

(Ck,i)wk
=

−kpot(wk − wobsik
)

(dk)i[(dk)i − dmin]2
=

−kpot(wk − wobsik
)

(dk)i(αk)2i
(16)
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Fig. 1. Potential Field Graph depicting the “dangerous-zone” in yellow.

From this we can see that both the distance (dk)i, and the
distance to the limit (αk)i = (dk)i − dmin are required to
remain non-zero positive.

To tackle the aforementioned problems, we propose to
impose a limit on these expressions by:

(dk)
∗
i =

{
(dk)i (dk)i ≥ ϵmin

ϵmin (dk)i < ϵmin

(17)

(αk)
∗
i =

{
(αk)i (αk)i ≥ ϵmin

ϵmin (αk)i < ϵmin

(18)

Thus ensuring that the obstacle is always “pushed” away, even
if entering the “dangerous” zone.

This approach can also be seen as an equivalent to using
soft-constraints when implementing the alternative constraints-
based approach. Indeed, it is important to remember that
the feasibility of the problem itself depends not only on
the manoeuvering capabilities of the UAV being controlled,
but also on the nature of the trajectories of the obstacles
themselves, eg. their overall speeds.

Lastly, the user might use different safe distances dmin

and weights kpot for different obstacles and even at different
time-steps k, eg. to capture their uncertainty and provide a
more robust solution. Additionally, the user may consider a
maximum distance dmax as an “activation” function, similar
to [7] to select the distance at which the potential field of a
given obstacle starts to take an effect.

C. Distributed Model Predictive Control

Although having a centralised MPC scheme to control
multiple UAV vehicles may result in a relatively simple control
structure to implement, it has a number disadvantages. As an
example, by having a single node controlling the other nodes
over a network, the overall Mission becomes vulnerable to
having a single point of attack that would cause total failure.
Instead, by having a distributed framework, the system has an
inherent modularity which naturally gives it more flexibility
and robustness against networked cyber-security attacks, as
well as makes the design of the local controllers much simpler.
It is for this reason that all the obstacles in (11) are considered



an “external” entity rather than a decision variable. Indeed, it
is this last point which makes both types of approaches to
differ where in a centralised approach, the agreement between
each UAV would be done “simultaneously” at the time of the
optimisation, in the sense that the “master” controller would
dictate UAV1 and UAV2 to move in X and Y manner as
appropriate at the exact same time.

In contrast, the distributed MPC approach relies on com-
munication of information, including their predicted paths to
achieve an agreement between the UAVs, which naturally can
lead to having delays when sharing the latest projected paths.
An alternative to this would be to have a completely decen-
tralised approach with no communication where by observing
other UAVs movement in real-time, one could “infer” their
projected paths as recently discussed in [9] which introduced
the concept of “legibility” in the design of MPC control
systems. At this point it should be noted that regardless
of whether it is a decentralised or distributed approach, the
decisions being made by one UAV at a given time will
typically consider the other UAVs will not change their current
projected paths which will often lead to an overall sub-optimal
solution when compared to the centralised approach. At the
end, the implementation of distributed MPC it is often a matter
of communication setup and assumptions.

In this paper, we assume that the information between the
UAVs will be shared with a synchronous unit time-step delay,
in the sense that each UAV will be aware of what the other
UAV planned 1 time-step ago. The approach might be able to
compensate multiple/time-varying time-steps delays for each
UAV separately and in an asynchronous manner with very
little adjustments. Moreover, the time-step delay itself could
be used to incorporate robust/uncertainty considerations, eg.
by adjusting the safe-distance to the obstacle according to the
“age” of the information that was provided, ie. how long ago
was the path provided. Nonetheless, both of these aspects were
outside the scope of this paper. The specific details of the
implementation will be discussed further in the final algorithm
provided in section II-D.

On the other hand, a key benefit of using the proposed
Laguerre-based input-parameterisation in this paper is the
amount of information to be transmitted over the communi-
cation channels to the other UAVs when compared to other
approaches such as the standard NMPC, in particular when
considering them in a distributed optimisation fashion. To
give an example of this, assuming the projected path of
a given UAV is defined by a state vector composed of 3
positions (xk = [x, y, z]T ) and has velocity/control vector
(uk = [vx, vy, vz]

T ) with a prediction horizon of Np = 100,
it results in its path being defined by 1212 bytes (assuming a
float variable is used). In contrast, having NL = 3 Laguerre
polynomials per input results in its path being defined by 48
bytes, thus reducing nearly 25 times the required bandwidth.

Another important feature is that the projected path obtained
by the Laguerre polynomials will always decay to zero as seen
in figure 4.1 of [11], thus resulting in a predictable path in case
of loss of communication from a given UAV. Although this

might be directly implemented in the velocity vector which
would result in the vehicle eventually becoming completely
“static”, in this paper we apply the proposed approach on the
force/acceleration vector, which would result in the vehicle
eventually having a constant velocity vector. We will describe
this further in section III-A.

D. Algorithms and Methodology Summary

To give an overall summary of the proposed approach, we
provide algorithm 1 which describes the required steps written
in “pseudo-code” to be implemented by the local controllers of
each UAV. To achieve this, we assume the algorithm receives
some basic information described in “Data”, such as: current
state vector, nominal control vector obtained in the previous
time step, as well as the state and parameterised control vectors
of other UAVs obtained in the previous time steps. Other
parameters related to tuning and optimisation setup such as
weights, constraints and relevant sizes are also included.

The algorithm is divided in 4 main sections, namely:
state/data alignment (lines 2-4), prediction and linearisation
(lines 5-8), optimisation (lines 9-11) and communication (line
12). A key part of the algorithm is the ”shifting” performed
in line 4, which is typically done by duplicating the last input
as described in [11], although other types of shifting might be
used, eg. by imposing the continuity of the Laguerre polynomi-
als beyond the prediction horizon. Indeed, it is this part which
could be modified to handle multiple time-step delays. Lastly,
the algorithm assumes that the input-parameterisation (N) of
all UAVs is the same, and that the potential field terms kpot
and dmin remain constant. Nonetheless, they can be adjusted
to fit a given scenario, eg. if vehicles of different sizes were
used and/or different parameterisations were required.

Algorithm 1: Laguerre-based Local NMPC Controller
for Dynamic Obstacle Avoidance

Data: xk, Ūk−1, x
i
obsk−1

, η̂iobsk−1
, nx, nu, nη, Np, Q,R

Xmin, Xmax, Umin, Umax, aL, NL,N, kpot, dmin, ϵ
1 begin

/* State/Data alignment */
2 Decompress Ū i

obsk−1
= Nη̂obsk−1

∀i = [1, Nobs]

3 Predict x̂i
obsk

using ūi
obsk−1

∀i = [1, Nobs]

4 Shift Ūk−1 and Ū i
k−1 ∀i = [1, Nobs] forward

/* Prediction and Linearisation */
5 Predict X̄ using Ūk and x0 = xk

6 Predict X̄i
obs using Ū i

obsk
and x̂i

obsk
∀i = [1, Nobs]

7 Calculate HN and (HN)i
8 Calculate E, ftotal,M, γ

/* Optimisation */
9 Solve η̂k = quadprog(E, ftotal,M, γ)

10 Decompress Ūk = Nη̂k
11 Select and apply first input uk = Ūk(1)

/* Communication */
12 Communicate x̂k and η̂k to other UAVs
13 end

Result: uk, Ūk, η̂k



III. SIMULATIONS

A. Multi-Rotor UAVs Positioning Model
Although one may apply the proposed approach directly in

a fully nonlinear system, positioning models for multi-rotor
UAVs can often be simplified to a mass-damper given by:ẍÿ

z̈

 =

−axẋ+ bxFx

−ay ẏ + byFy

−az ż + bzFz

 (19)

This is because of their omni-directional movement capabil-
ities, thus allowing the NMPC to be used as a “high-level”
planner which can be coupled with inner controllers, eg. by
using control allocation techniques [16] or nonlinear control
laws such as back-stepping and Nonlinear Dynamic Inversion
(NDI) [11]. Moreover, the use of a linear model allows further
reductions in the computational burden. For example, matrices
E,M would be constant, thus allowing the use of special cases
on QP solvers which can take advantage of this condition.

B. Simulation Setup and Results
To evaluate the performance of the proposed approach,

a T = 50 (s) simulation with 50 UAVs sharing common
airspace was performed. In this case each UAV had a random
reference position assigned approximately every 3 ± 1 (s) in
a cylindrical space with a 15 meter radius, and a 10 meter
altitude. The new reference was assigned such that the UAV
would pass close to the center of the cylindrical airspace to
maximise the amount of possible collisions between the UAVs.

Assuming the state xk = [x, vx, y, vy, z, vz]
T
k and the

control vector uk = [Fx, Fy, Fz]
T
k , system (19) was discretised

using Zero-Order Hold with a sampling time of Ts = 0.02 (s)
and coefficients ax = ay = az = 0 and bx = by = bz = 1,
ie. a unit-mass in space. Moreover, the parameters used for
the approach were selected as Q = [1, 0.1, 1, 0.1, 1, 0.1],
R = [1, 1, 1], Np = 100, aL = 0.7, dmin = 1, kpot = 10,
ϵ = 0.5. No state or input constraints were imposed. Moreover,
the reference was injected at the end of the prediction horizon
to give a smooth transition as discussed in [12].

Considering the UAVs are navigating a dynamic environ-
ment, it is difficult to demonstrate the performance in a static
graph given 2 UAVs can occupy the same space at different
times. The result can be better appreciated in the animation
given in (https://youtu.be/LhTsyzlaFfw). Figure 2 shows the
minimum distances maintained between all 50 UAVs, clearly
showing the distance constraint is satisfied.
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Fig. 2. Minimum distance maintained between all 50 UAVs.

IV. CONCLUSIONS AND FUTURE WORK

This paper proposed a Distributed NMPC approach for
Dynamic Obstacle Avoidance on Multi-rotor UAVs based on
the so-called Laguerre Polynomials combined with Potential
Field terms to reduce the computational burden, as well as to
reduce the amount of information required to be transmitted,
thus giving it the potential to be used for real-time applications.
A complete derivation of the overall method is presented along
with an algorithm for its implementation. The efficiency of the
proposed approach is presented with a simulation of 50 UAVs.

Future work will focus on a physical implementation whilst
including robust/uncertainty considerations to tackle multi-step
time-varying delays on the communication channels.
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