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Abstract—Deep learning-based imperceptible adversarial at-
tack detection methods have recently seen significant progress.
However, the accuracy, latency, and computational cost of pre-
vious methods remain insufficient. Particularly, trained attack
detection models can potentially be applied in previously unseen
conditions, such as new datasets or attacks for real-world
applications. Therefore, to improve domain generalization perfor-
mance, we propose a new method for cross-domain imperceptible
adversarial attack detection by leveraging domain generalization,
where we train the model’s feature extractor or detector with a
partner well-tuned for different domains. Different from conven-
tional domain generalization methods, we use the global loss and
local loss to train each feature extractor or detector. Moreover, to
efficiently re-use high-resolution feature maps from the feature
extractor, we propose a feature fusion network, which exploits
feature maps from images that are attacked with different error
rates and helps extract rich features to further improve the attack
detection accuracy. Extensive experiments on four public datasets
are used to demonstrate the efficacy of the proposed method.
The source code of the proposed method will be released after
acceptance.

Index Terms—imperceptible adversarial attack, domain gen-
eralization, cross-domain, local loss, feature fusion

I. INTRODUCTION

Machine learning techniques play an important part in real-
world applications. However, the vulnerability to adversarial
training samples becomes one of the major risks for applying
neural networks in safety-critical environments because the
performance extremely relies on the accuracy of training
samples or labels [1]. Due to the importance of the training
samples for machine learning technologies, numerous attack
detection methods have been proposed to solve this problem.
However, there are two key challenges.

Well-trained networks often suffer a performance degra-
dation if deployed to unseen domains with very different
statistics to the training data [2]. This so-called domain shift
problem is a common challenge in real-world scenarios [3].
The conventional methods to solve this problem can be cat-
egorized into domain adaptation and domain generalization
methods. Domain adaptation is exploited to solve in the case
where some labelled or unlabelled data from the target domain
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is available for adaptation [4]–[6], while domain generalization
aims to solve in the case where no adaptation to the target
problem is available due to lack of data or computation
[7]. Certainly, domain generalization is a more challenging
and practical problem setting than domain adaptation because
explicit training on the target is disallowed; yet it is partic-
ularly valuable due to its lack of assumptions [8]. However,
the domain generalization study in imperceptible adversarial
attack detection is limited.

The second challenge is model scaling. In multi-resolution
based encoder and decoder architectures, previous approaches
mainly rely on larger backbone networks to achieve higher
performance [9], [10]. However, in recent studies [11], scaling
up feature extractor and classifier is proved to play a more
important role in the trade-off between accuracy and efficiency.
Tan et al. propose a compound scaling method to jointly scale
up the depth, width, and resolution for all backbones, feature
networks, and prediction networks [11]. The EfficientDet
method consistently achieves high accuracy and reduces the
model size. However, the EfficientDet method is applied for
the object detection task in the original implementation [11].
The performance of the EfficientDet in attack detection is
limited, as shown in Section IV. C.

In this work, we propose a new method to mitigate these
two challenges. Firstly, we propose a global loss to train the
feature extractor or detector of the neural network with a
partner who is well tuned for different domains. The partner
is a detector when training the feature extractor, and vice
versa. This allows each component, i.e., the feature extractor
or detector performs robust in unseen domains. Then, to
guarantee the attack detection performance, we propose a
local loss for each pair of feature extractor and detector.
Furthermore, after extracting feature maps from images that
are attacked with different error rates, a feature fusion network
(FFN) is proposed to exploit these feature maps and efficiently
recover lost information from the high-level representation to
further improve the attack detection accuracy. Finally, the well-
trained network components, i.e., the feature extractor, feature
fusion network, and detector, are combined and evaluated with
unseen domains.



The rest of the paper is organized as follows. The related
work to attack detection and domain generalization is intro-
duced in Section II. Then, we describe the proposed method in
Section III. The experimental settings and results are presented
in Section IV. Finally, Section V concludes the work.

II. RELATED WORKS

In this section, a literature review is provided for basic
attack and detection techniques related to machine learning.
Then, we introduce conventional domain generalization meth-
ods.

A. Attacks

Recent studies demonstrate that trained neural networks can
be compromised by adversarial samples or attacks with small
imperceptible perturbations [12]. This raises safety concerns
about the deployment of these networks in real-world applica-
tions, including autonomous driving, and clinical settings [1].

1) Fast Gradient Sign Method (FGSM): : As one of single-
step adversarial attacks, FGSM exploits backpropagation to
efficiently calculate the required gradient [13]. The adversarial
image is calculated as y+ ϵ∗ sign(∆yJ(λ, x, y)) where x and
y are the attacked image and the original image, respectively.
The scale of the distortion is presented as ϵ. Moreover,
J(λ, x, y) is the cost function with the network parameter λ.

2) Projected Gradient Descent (PGD): : This attack intro-
duces an iterative version of the FGSM attack. The authors
add a perturbation step in each step of the training stage to
make the algorithm more robust [14]. The experiments in [14]
prove that the PGD attack is one of the strongest attacks to
different detection and defense techniques.

3) Semantic similarity attack on high-frequency compo-
nents (SSAH): : As introduced by [15], the SSAH attack con-
centrates in semantic similarity on feature representations. The
high-frequency components of an image contain trivial details
and noise, whereas the low-frequency components represent
basic information. Therefore, the low-frequency constraint
is introduced to limit perturbations within high-frequency
components. By using the constraint, the perceptual similarity
between adversarial examples and originals is ensured.

B. Detection

Developing attack detection against adversarial examples
plays an important role in guaranteeing the performance
robustness of trained networks. Several detection techniques
are introduced in the literature.

1) Adversarial Training: The adversarial training aims to
augment the training with FGSM samples [13]. For example,
in [16], the reverse cross-entropy (RCE) is minimized to
encourage the neural network to learn the latent representation
that better detects attacked samples, e.g., FGSM samples or
labels from normal ones. However, the recent study [17] shows
that adversarial training is not always robust, particularly
against iterative white-box attacks and black-box single-step
attacks.

2) L-RED: Backdoor adversarial attacks aim to force the
neural network to classify to a target class when test samples
from multiple source classes contain a backdoor pattern while
maintaining high accuracy on all clean test samples [18].
Different from conventional defending methods, access to the
training dataset is not required in Reverse-Engineering-based
Defenses (REDs) against backdoor adversarial attacks [19].
Moreover, the number of source classes can be unavailable
but only requires very few clean images to detect the backdoor
attacks and reduce the computational complexity [20].

3) Sim-DNN: As one of the deep learning-based detection
techniques, Soares et al. propose a similarity-based deep
neural network (sim-DNN) to detect adversarial attacks [21].
The degree of similarity between training samples and their
prototypes is considered. By minimizing the similarity score,
the concept changes are detected from the attacked data when
comparing their similarities against the set of prototypes. Com-
pared to the above-mentioned two detection methods, Sim-
DNN efficiently improves the detection performance against
various attacks, i.e., FGSM, PGD, and Decoupling Direction
and Norm (DDN) [22].

C. Domain Generalization

Recently, domain generalization methods can be divided
into several categories by motivating intuition [3].

1) Domain Invariant Features: Assuming that the invariant
features from the source domains works well in the target do-
mains, these features minimize the discrepancy between source
domains to learn the domain-invariant representation [23].
In generative adversarial networks (GAN) based adversarial
training, explicit features are generated to fool the decoder or
domain discriminator by detecting the source features from
target features [24].

2) Data Augmentation: In recent studies [25], [26], data
augmentation-based techniques are exploited to synthesise
additional training data to further boost the robustness of
neural networks to unseen target domains. For example, data
augmentation and domain distance minimisation are com-
bined to provide a guarantee on the domain generalization
performance [25]. To achieve that, the authors hypothesise a
high dimensional space in which each axis corresponds to an
independent augmentation function.

3) Optimisation Algorithms: These develop optimisation
algorithms such as episodic training and meta-learning to
solve domain shift problems [2], [27]. Li et al. propose an
episodic training to solve domain generalization problems [2].
A classifier with random weights is exploited to train the target
feature extractor. Then, the target classifier is trained with a
domain-specific feature extractor.

III. PROPOSED METHODS

In the domain generalization problem, we assume that we
are provided with n source domains D = [D1,D2, . . . ,Dn],
where Di is the ith source domain containing data-label pairs(
xj
i , y

j
i

)
. Particularly, j denotes the layer number within the

ith domain. The neural network is required to learn f : x → y



and performs well to an unseen test domain with different
statistics to the training domains. However, knowledge of the
test domain is not available during the training stage. To
achieve that, in this work, we aim to train a robust set of
a feature extractor FT and a detector DT . We assume that the
parameters of FT and DT are ϕ and θ, respectively. Thus, after
the training, the model is expected as f(x) = θ(ϕ(x)). The
overall proposed domain generalization method is illustrated
in Fig. 1.

Fig. 1. Proposed training and test strategies of the proposed domain general-
ization method. (a) The target feature extractor FT is sequentially trained with
n detectors. Losses are calculated from each pair of network components with
one specific domain to further boost the domain generalization performance
of the parameter ϕ. (b) The target detector FT is sequentially paired with
n feature extractors. The parameter θ is further trained due to rich extracted
features from different domains. (c) In the test stage, the trained FT and
DT with the feature fusion network are combined as the final network and
evaluated with unseen domains.

A. Feature Extractor Training

In the first stage, i.e., Fig. 1 (a), we aim to train ϕ to learn
robust features that test data from unseen domains can be well
processed by a detector that has never processed this domain
before. To achieve that, we propose two loss terms to train the
target feature extractor.

The first loss term is domain-specific loss of the target
feature extractor Lϕ

ds that describes the global ϕ training to
improve domain generalization performance. The optimisation
task for Lϕ

ds can be presented as:

argmin
ϕ,[θ1,...,θn]

EDi∼D

[
E(xi,yi)∼Di

[
Lϕ
at (yi, θi (ϕ (xi))]

]
(1)

where θ1, . . . , θn indicates parameters of different detectors
that are trained with ϕ. The attack loss of ϕ is presented as
Lϕ
at. During the training ϕ, input data xi is attacked with

different error rates. The FFN obtains the feature maps and
maps them into a fused latent space with rich information
from the high- and low-level representations. Moreover, each
paired detector is required to make correct predictions with the
specific domain by using the fused latent space. Particularly,
the parameter ϕ is penalized whenever different detectors

output the wrong predictions with various source domains.
Therefore, by optimising the Lϕ

ds, ϕ is trained to extract more
generalized features to help a detector recognize data that is
from unseen domains.

The second loss term is attack loss Lϕ
at to train each pair of

ϕ and θi, which improves the attack detection performance.
To explicitly introduce Lϕ

at, the model architecture is shown
in Fig. 2.

Fig. 2. Model architecture. The proposed MM-BiFPN network consists of a
feature extractor, a FFN, and a detector. Each feature extractor’s respective
layers are concatenated and act as input for FFN layers for feature fusing.
Then, fused features obtained from the FFN are transmitted into the detector
to detect the attacks and produce a reconstructed image.

Different from conventional attack detection methods [16],
[21], in the data pre-processing stage, each image sample are
attacked with random error rates and individually fed to each
layer. Then, feature maps are extracted from the attacked and
clean images. The detector obtains the fused feature from the
FFN and produces the reconstructed image. The loss Lϕ

at can
be calculated between reconstructed and clean images as:

Lϕ
at =

N∑
j=1

ℓ
(
yi, θi

(
ϕ
(
xj
i

))
(2)

where ℓ(·) denotes the cross-entropy loss. Therefore, we
exploit the global loss, i.e., Lϕ

ds to train the parameter ϕ with
multiple θis, while we use the local loss, i.e., Lϕ

at to train each
pair of ϕ and θi.

B. Feature Fusion Network

In this work, inspired from the BiFPN [11], we propose
a feature fusion network (FFN) between the feature extractor
and detector for an efficient feature fusion.

As shown in Fig. 2, the images are attacked with different
random error rates and fed into layers of the feature extractor.
After extracting feature maps from attacked and clean images,
we aim to efficiently recover lost information from the high-
level representations with a simple network. Conventional fea-
ture fusion methods commonly focus on fusing with different
resolutions [11], [21]. However, we observe that the attack
detection performance is still limited, which will be further
confirmed in Section IV.C. To address this issue, we firstly
attack a image with different error rates. To the best of our



knowledge, this is the first feature fusion of different error
rates work in imperceptible adversarial attack detection.

To achieve that, we aim to exploit these feature maps for a
feature fusion with the proposed FFN. In the proposed method,
each layer of the feature extractor is concatenated and provides
the input for each FFN layer. In the FFN training, the features
maps are fused in both bottom-up and top-down directions,
thus the FFN can effectively learn the features from clean and
attacked images.

In the basic architecture i.e., FFN containing only three
layers. We define the input, mid and output units as P in

m , Pmid
m

and P out
m , respectively. As shown in Fig. 2, the output of each

FFN layer can be calculated as follows:

P out
1 = Conv

(
P in
1 ⊕ Resize

(
Pmid
2

))
Pmid
2 = Conv

(
P in
2 ⊕ Resize

(
P in
3

))
P out
2 = Conv

(
Pmid
2 ⊕ Resize

(
P in
2

)) (3)

where Conv and ⊕ are the convolution layer and concatena-
tion operation, respectively. Moreover, the resize function is
exploited to match the resolution size to combine the inputs.

C. Detector Training

Similar to the training for the feature extractor, in the second
stage i.e., Fig. 1 (b), we aim to train θ to detect the attacks
from unseen domains with extracted features from trained ϕ.
It is highlighted that the trained ϕ and θ1, . . . , θn from Fig. 1
(a) are not available in this stage. Therefore, the training of
θ and ϕ can be processed in parallel to reduce the training
time. To improve domain generalization performance of θ,
we propose two loss terms to train the target detectors with
different feature extractors.

The first loss term is domain-specific loss of the target
detector Lθ

ds that describes the global θ training to improve
domain generalization performance. We optimise:

argmin
θ,[ϕ1,...,ϕn]

EDi∼D
[
E(xi,yi)∼Di

[ℓ (yi, θ (ϕi (xi))]] (4)

where parameters of different feature extractors that extract
features for θ are presented as ϕ1, . . . , ϕn. In each pair of
ϕi and θ training, feature maps are obtained from input
source domains. Then, feature maps are fed into the FFN
for a feature fusion from different levels of representations.
The lost information from particular-level representations is
efficiently recovered. Then, the fused feature representations
from different feature extractors are sequentially fed into the
target detector to detect the attacks. The loss is calculated by
the ground truth and detection result from each pair of ϕi and
θ to train θ. During the training, the detector θ is trained to be
robust enough to process data xi that has been encoded by a
paired feature extractor. Therefore, the domain generalization
performance of θ is improved.

The second loss term is attack loss of the detector. As the
input of the detector, the fused feature is obtained from the
FFN. For each detector layer, we concatenate three compo-
nents, including the previous upsampled layer, the respective
FFN layer, and the respective feature extractor layer outputs

to produce the input for the next detector layer. Therefore, the
loss Lθ

at is calculated as:

Lθ
at =

N∑
j=1

ℓ
(
yi, θ

(
ϕi

(
xj
i

))
(5)

Similarly, the global loss, i.e., Lθ
ds is exploited to train the

parameter θ with multiple ϕis, while we use the local loss,
i.e., Lθ

at to train each pair of ϕi and θ. The pseudo-code of
the training stage is summarized in Algorithm 1.

Algorithm 1 Overall algorithm.
1: Input: Datasets D = [D1,D2, . . . ,Dn], learning rate η,

epoch Emax

2: Initialize target network parameters ϕ and θ
3: Initialize paired network parameters ϕ1, . . . , ϕn and

θ1, . . . , θn
4: Initialize hyper parameter α
5: for i ∈ (1, . . . , n) do
6: for E = 1, 2, ..., Emax do
7: ϕ = ϕ− α▽θi (L

ϕ
at)

8: end for
9: ϕ = ϕ− α▽θi (L

ϕ
ds)

10: for E = 1, 2, ..., Emax do
11: θ = θ − α▽ϕi (Lθ

at)
12: end for
13: θ = θ − α▽ϕi

(Lθ
ds)

14: end for
15: Output: ϕ and θ

IV. EXPERIMENTS

A. Datasets and Performance Measure

We perform experiments on several public datasets, includ-
ing Canadian Institute For Advanced Research-10 (CIFAR-
10), CIFAR-100 [28], ImageNet Large Scale Visual Recogni-
tion Challenge (ILSVRC) [29], and ImageNet-R [30].

1) CIFAR-10 & CIFAR-100: As labeled subsets of the 80
million tiny images dataset [28], the CIFAR-10 and CIFAR-
100 are commonly-used datasets in the object recognition task.
Each dataset provides a set of 60,000 32x32 colour images.
In our experiments, we randomly select 50,000 and 10,000
images from each dataset for the training and validation stages,
respectively.

2) ILSVRC: As a subset of ImageNet, the ILSVRC
dataset [29] contains 1,281,167 training images, 50,000 valida-
tion images, and 100,000 test images. In our experiments, we
randomly select 50,000 and 10,000 images from the ILSVRC
dataset for the training and validation stages, respectively.

3) ImageNet-R: The ImageNet-R dataset [30] is a set of
images labelled with ImageNet labels. In our experiments, we
randomly select 10,000 images as the test data.

The adversarial samples from these datasets are constructed
with FGSM, PGD, and SSAH attacks. We select these attacks
because they are robust to novel adversarial attack detection
and defense techniques [15], [21]. Each one is The error rate



TABLE I
ATTACK DETECTION RATIO WITH THE SAME ATTACK BETWEEN THE TRAINING AND TEST STAGES BUT UNSEEN DATASET (IMAGENET-R). EACH RESULT

IS THE AVERAGE OF 10,000 EXPERIMENTS. BOLD INDICATES THE BEST RESULTS. italic SHOWS THE PROPOSED METHODS.

Computation Detection Ratio (%)
Method Para. (M) Time (s) FGSM PGD SSAH

MetaQDA [27] 37.9 495.9 55.1 ± 1.8 59.2 ± 2.3 48.8 ± 2.5
Epi-FCR [2] 62.7 728.4 57.3 ± 1.4 60.0 ± 1.6 49.4 ± 0.7

Adversarial Training [16] 8.2 102.1 57.8 ± 1.3 61.1 ± 1.1 49.5 ± 1.7
CCAT [31] 36.5 454.7 57.5 ± 1.2 61.4 ± 0.8 48.2 ± 0.9
L-RED [20] 78.5 811.3 59.9 ± 0.9 62.3 ± 1.2 53.1 ± 1.5

BulletTrain [32] 2.2 58.3 60.7 ± 1.9 64.6 ± 1.4 58.5 ± 1.3
Sim-DNN [21] 134.9 1291.6 64.5 ± 1.6 66.9 ± 1.9 59.2 ± 1.1

DGAD (3) 2.1 99.6 67.3 ± 0.9 69.4 ± 1.1 65.6 ± 0.8
DGAD (4) 4.8 141.7 69.5 ± 0.7 72.2 ± 1.0 69.9 ± 0.5
DGAD (5) 6.9 168.0 75.0 ± 0.4 76.3 ± 0.5 72.5 ± 0.3

is randomly set from 0.01 to 0.04 in both the training and test
stages.

In the experiment, the detection rate (DR) [21] is used as
the performance measure.

DR(%) =
TP + TN

TP + TN + FP + FN
× 100 (6)

where TP and TN are true positive and true negative results,
and FP and FN are false positive and false negative results.

B. Competitors and Model Configuration

We compare the proposed method with domain generaliza-
tion methods and attack detection methods. The MetaQDA
is a Bayesian meta-learning based domain generalization
method with wide residual networks (WRN-28-10) [33]. As
the configuration with the best performance in [2], the Epi-
FCR combines the vanilla aggregation loss, domain-specific
loss, episodic loss, and random classifier loss implemented
on a Resnet18 [34]. For attack detection methods, Adver
encourages a Resnet56 network to learn latent representations
that better distinguish adversarial examples from normal ones
[16]. L-RED presents a Lagrangian-based RED algorithm with
an arbitrary number of source classes on a Resnet18-DNN
network [20]. As an imperceptible adversarial attack detec-
tion method, [21] introduces a similarity layer, a conditional
probability layer, and a prototype identification layer on a
DNN with a VGG-16 [35] as the feature extractor. BulletTrain
and confidence-calibrated adversarial training (CCAT) exploit
WRN-40-2 and WRN-10-28 as backbones, respectively [31],
[32].

In the proposed generalization attack detection (DGAD)
model training, different network components help to improve
domain generalization, but lose some performance due to the
forgetting effect. Therefore, we combine the training features
in the current domain, i.e., Di, with trained features from the
previous domain, i.e., Di−1, by using concatenation and mean-
pooling operations. The proposed model is trained by using
the M-SGD optimizer with a learning rate set empirically to
0.0008. The batch size is set to 32. We train the networks
for 100 epochs. All the experiments are run on the High End
Computing (HEC) Cluster with Tesla V100 GPUs.

C. Results

1) Domains with Seen Attacks: In the first experiment,
we use the same attack but different datasets in domains to
evaluate and compare the detection ratio of comparison and
proposed methods in Table I. The number of training domains
is set to 3 corresponding to training datasets, i.e., CIFAR-
10, CIFAR-100, and ILSVRC. To show the efficiency of the
proposed method, the parameters and training time of the
models are compared in Table I. Moreover, the number of
layers is presented in brackets.

From Table I, it can be observed that: (1) In all the evaluated
models, the proposed DGAD methods with different numbers
of layers offer the best effectiveness. For example, when eval-
uating the model with the PGD attack, the DGAD model with
five layers achieves 25.9% better accuracy than Sim-DNN.
The reason is that the proposed FFN fuses feature information
from different resolutions and error rates, which recovers the
lost information than conventional methods. Moreover, the
proposed domain generalization method train parameters ϕ
and θ robust to unseen domains. (2) The proposed DGAD
models offer the best trade-off between performance and
model size. These results suggest that the proposed DGAD
method is quite promising for imperceptible adversarial attack
detection.

2) Domains with Unseen Attacks: In the second experi-
ment, to evaluate and compare the detection performance in
a more challenging case, we use both different attacks and
datasets in domains between the training and test stages in
Table II. Different from Section IV. C. 1), the number of
training domains is set to 2. Each domain contains one dataset
(CIFAR-10, CIFAR-100) and one attack type (FGSM, PGD,
SSAH). For example, we train models with two domains
containing PGD and SSAH, respectively, while test models
with the FGSM attack.

We can observe from Table II that the proposed DGAD
models achieve better performance than previous models.
Moreover, compared to Table II, it is possible to note that
the proposed DGAD models performance tends to fall less
than the previous models when less training data applied and
unseen attack type evaluated. For example, the proposed model
with 5 layers drops from 75.0% to 73.8%, while the MetaQDA



TABLE II
ATTACK DETECTION RATIO WITH UNSEEN ATTACK AND DATASET IN THE
TEST STAGE. EACH RESULT IS THE AVERAGE OF 10,000 EXPERIMENTS.

BOLD INDICATES THE BEST RESULTS. italic SHOWS THE PROPOSED
METHODS.

Detection Ratio (%)
Method FGSM PGD SSAH

MetaQDA [27] 50.4 ± 2.0 55.5 ± 2.1 43.7 ± 2.9
Epi-FCR [2] 56.9 ± 1.6 59.4 ± 1.6 49.1 ± 0.8

Adversarial Training [16] 53.2 ± 1.9 57.6 ± 1.4 45.5 ± 1.8
CCAT [31] 54.7 ± 1.5 59.1 ± 1.2 48.0 ± 1.5
L-RED [20] 56.1 ± 1.4 58.8 ± 1.5 48.2 ± 2.1

BulletTrain [32] 58.2 ± 1.9 58.9 ± 1.8 48.9 ± 1.6
Sim-DNN [21] 60.8 ± 1.7 63.3 ± 2.4 55.2 ± 1.5

DGAD (3) 65.8 ± 0.8 68.1 ± 1.3 64.0 ± 1.0
DGAD (4) 68.9 ± 0.7 71.0 ± 1.3 69.1 ± 0.7
DGAD (5) 73.8 ± 0.6 73.2 ± 0.9 69.5 ± 0.7

model drops from 55.1% to 50.4%.
3) Ablation Study: In this section, we investigate the effec-

tiveness of each contribution based on the ImageNet-R dataset.
The cross mark 7 for Lϕ

ds + Lθ
ds means we only use one

paired component to train the feature extractor or detector,
respectively. The ablation study is presented in Table III and
the experimental setting is the same as Table I.

TABLE III
ABLATION STUDY OF THE THREE CONTRIBUTIONS IN THE PROPOSED
METHOD. EACH RESULT IS THE AVERAGE OF 30,000 EXPERIMENTS

(10,000 IMAGES×3 ATTACKS).

Ablation Settings DR (%)
Lϕ
ds + Lθ

ds Lϕ
at + Lθ

at FFN
✗ ✗ ✗ 33.5
✓ ✗ ✗ 53.7
✗ ✓ ✗ 59.6
✗ ✗ ✓ 57.0
✗ ✓ ✓ 61.8
✓ ✗ ✓ 70.9
✓ ✓ ✗ 63.5
✓ ✓ ✓ 74.6

Initially, the effectiveness of the domain-specific losses is
studied. Compared to the baseline, the detection performance
is significantly improved by adding Lϕ

ds and Lθ
ds. The reason

is the performance degradation due to the domain transfer
is reduced by the proposed domain generalization method.
The parameters ϕ and θ are trained robust by using different
extracted features from ϕi and predictions from θi.

Moreover, the experiment is performed by adding the
proposed attack losses. As the most influential contribution,
the Lϕ

at and Lθ
at play the most important role in the attack

detection. Different from the conventional attack detection
approaches, the proposed method attacks the training sample
with different error rates. The loss between the attacked and
original images is calculated to train ϕ and θ to learn rich
features and detect attacks from the fused feature, respectively.
Therefore, the attack detection performance of the model with
Lϕ
at and Lθ

at is further boosted than the baseline.
The final experiment in the ablation study is performed by

adding the FFN that obtains the feature maps from different
layers of the feature extractor. Different from conventional

BiFPN [11], the proposed FFN fuses features with differ-
ent error rates in each image to boost the attack detection
performance of the model. Therefore, the attack detection
performance of the model with the FFN is further improved
as shown in Table III.

Furthermore, the visualizations are given in Fig. 3, which
are related to the reconstructions after detecting attacks of
three randomly selected images from the ImageNet-R dataset.
After comparing the reconstructed images with the original
and attacked images, it can be observed that the reconstruc-
tions obtained via the proposed method, i.e., Fig. 3 (d)&(e),
are closer to original images, which again confirms the efficacy
of the proposed method.

V. CONCLUSION

In this paper, we proposed a domain generalization method
to solve two challenges in cross-domain imperceptible adver-
sarial attack detection. To accomplish this, we first trained
the feature extractor and detector with a partner who was
well-tuned for different domains, i.e., datasets and attacks.
The feature extractor and detector were trained with the
domain-specific loss so that the trained model’s robustness was
improved to unseen domains. Moreover, we proposed a feature
fusion network to feature maps from images that were attacked
with different error rates. Our experiments demonstrate the
efficacy of our training approach in unseen domains, and the
computational complexity is reduced.
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