Domain Generalization and Feature Fusion for Cross-domain Imperceptible Adversarial Attack Detection Lancaster University

Researcher: Dr. Yi Li Investigators: Prof. Plamen Angelov, Prof. Neeraj Suri

Background: Imperceptible Adversarial Attack Detection

Engineering and Physical Sciences Research Council

Domain Generalization Framework

- The feature extractor or detector is trained with a partner who is well tuned for different domains.
- In the test stage, the trained target feature extractor and detector are combined with the FFN to detect attacks in unseen domains.

Feature Fusion Network (FFN)

= Conv 3×3 + ReLU = Max Pooling = Upsampling block = Conv 1X1

 $P_1^{out} = Conv(P_1^{in} \oplus Resize(P_2^{mid}))$ $P_2^{mid} = Conv(P_2^{in} \oplus Resize(P_3^{in}))$ $P_2^{out} = Conv(P_2^{mid} \oplus Resize(P_2^{in}))$

Feature Extractor Feature Fusion Network Detector

Experimental Results

• Same attack in training and test

Attacks

Learning-Based Detection Methods: State-ofthe-art

Shared Convolutional Layer Input Data (Feature Extraction)

• Different datasets in training and test ◆ 10k images in ImageNet-R as the test dataset ◆ 50k images from each dataset for training

Attack Detection Performance Comparisons

	Computation	al Complexity	Detection Rat		%)
Method	Para. (M)	Time (s)	FGSM	PGD	SSAH
MetaQDA	37.9	495.9	55.1 ± 1.8	59.2 ± 2.3	48.8 ± 2.5
Epi-FCR	62.7	728.4	57.3 ± 1.4	60.0 ± 1.6	49.4 ± 0.7
Adversarial	8.2	102.1	57.8 ± 1.3	61.1 ± 1.1	49.5 ± 1.7
L-RED	78.5	811.3	59.9 ± 0.9	62.3 ± 1.2	53.1 ± 1.5
Sim-DNN	134.9	1291.6	64.5 ± 1.6	66.9 ± 1.9	59.2 ± 1.1
DGAD (3)	2.1	99.6	67.3 ± 0.9	69.4 ± 1.1	65.6 ± 0.8
DGAD (4)	4.8	141.7	69.5 ± 0.7	72.2 ± 1.0	69.9 ± 0.5
DGAD (5)	6.9	168.0	75.0 ± 0.4	76.3 ± 0.5	72.5 ± 0.5

Attack Detection Performance Comparisons

	Detection Ratio (%)				
Method	FGSM	PGD	SSAH		
MetaQDA	50.4 ± 2.0	55.5 ± 2.1	43.7 ± 2.9		
Epi-FCR	56.9 ± 1.6	59.4 ± 1.6	49.1 ± 0.8		
Adversarial	53.2 ± 1.9	57.6 ± 1.4	45.5 ± 1.8		
L-RED	56.1 ± 1.4	58.8 ± 1.5	48.2 ± 2.1		
Sim-DNN	60.8 ± 1.7	63.3 ± 2.4	55.2 ± 1.5		
DGAD (3)	65.8 ± 0.8	68.1 ± 1.3	64.0 ± 1.0		
DGAD (4)	68.9 ± 0.7	71.0 ± 1.3	69.1 ± 0.7		
DGAD (5)	73.8 ± 0.6	73.2 ± 0.9	69.5 ± 0.7		

training and test ◆ 10k images in ImageNet-R as the test dataset

• Different datasets in

• Different attack in training

and test

Pros:

- These methods provide excellent results for various attacks.
- These methods require few • manual-engineering

Cons:

- Weak adaptability and transferability to new domains, e.g., attacks or datasets.
- Slow training due to large model scales, particularly for the feature extractor (VGG-16).

Ongoing and Future Works

- Visualization results of the proposed algorithm will be completed. ullet
- Adaptability and transferability will be evaluated in real-world pictures, e.g., infrastructure.
- Ablation study of the proposed algorithm will be provided. ●

This work is supported by the Engineering and Physical Sciences Research Council [grant number: EP/V026763/1]