RS1: Securing the Autonomous

System Usage Environment

Lancaster University

Researchers: Dr. AnG
nvestigators: Prof. N

rew Sogokon, Dr. Zher
eeraj Suri, Prof. Plame

oxin Yu, Dr. Yi L
N Angelov

RS1 - Secure Usage of Autonomous Systems

Autonomous Systems (AS) are typically Cyber-Physical Systems (CPS) where
malfunctions can lead to catastrophic consequences, such as loss of life or
serious injury =2 AS entail safety-critical functionality.
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Challenges in RS1
* AS operatesin dynamic, unpredictable
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with complex data structures.
AS needs to make “adaptive & run-time”
decisions with incomplete and uncertain

data streams & resources.

 AS nodes are mobile.

RS-1A: RAFL- Dynamic & Compositional AS Security

* Develop a robust and adaptive federated meta-learning framework (RAFL)

resilient against adversaries.
Goals:

(VAE) online learning-based detection
model to detect adversarial attacks.

* Asimilarity-based model aggregation to
conduct a global meta-model to further
reduce the likelihood of uploading
adversarial models from AS nodes.
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RS-1B (1): Safe Decision Making in AS

» Establishing safe and secure operation of an AS in uncertain and dynamic
environments is part of the focus of our research in RS-1B (Explainable and Verifiable
Decision Making). We have undertaken a survey of specifications of AS, focusing on
formal specification.

* Formal modelling and verification of CPS is highly
challenging, but can help in providing very strong
guarantees about the behavior of AS.

* We are working towards adding support for reasoning
about CPS in the formal verification framework of TLA+
based on Lamport’s Temporal Logic of Actions.

 Formal methods can provide verifiable solutions to
trustworthy decision making in AS.
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RS-1B (2): Detecting Imperceptible Attacks

* Similarity-based Deep Neural Networks (Sim-DNN) can be used to detect
imperceptible adversarial attacks on the sensors (e.g. vision system) of AS.
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Pros: Cons:
* These frameworks provide « Weak adaptability and transferability to new
excellent results for various attacks. domains, e.g., attacks or datasets.
* These methods require few * Slow training due to large model scales,

manual-engineering. particularly for the feature extractor (VGG-16).

RS-1B (2): ML Domain Generalization Framework
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* The feature extractor or detector is trained with a partner who is well tuned for
different domains.

* Inthe test stage, the trained target feature extractor and detector are combined
with the FFN to detect attacks in unseen domains.

< RS-1A: RAFL- Experimental Results

RS-1A: The experimental results demonstrate that the proposed RAFL framework
IS robust by design and outperforms other baseline defensive methods against
adversaries in terms of model accuracy and efficiency.
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< RS-1B (1): Safe Decision Making in AS

RS-1B(1): We have implemented a proof obligation generator for checking
continuous inductive invariants (the proof obligations are discharged using the
SMT solver Z3) and are currently engaged in integrating it with the TLA+ Toolbox.
Enables a convenient way of proving safety of continuous systems within the
formal framework of the TLA+ Toolbox and will support formal verification of CPS.

RS-1A & 1B: Ongoing Work

* RS-1A: Develop a mobility-aware adaptive machine learning framework

* RS-1B(1): Formal specification of AS Safety and Security

* RS-1B (1): Case studies of safety verification of CPS in the TLA+ Toolbox. Integrate
oroof obligation generator into the Proof Manager in TLA+ Toolbox.

* RS-1B(2): Visualization results of the proposed algorithm will be completed.

* RS-1B(2): Adaptability and transferability will be evaluated in real-world photos.
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