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Proposed DNS Potential Fields

Multi-Rotor Case Study: Simulation Results

Two Common Methods:
* Potential Fields (Current)
* Nonlinear Constraints

Advantages of DNS Potential Field: : .
- Adaptive Obstacle Avoidance Predicted Distance to obstacles
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Figure 3: Comparison of Potential Field vs Nonlinear Constraints Figure 4: Potential Field graph depicting a “dangerous-zone” in yellow.

Distributed Model Predictive Control Future Work

* Develop efficient auto-generated algorithms for its implementation.

Advantages vs Centralised: Distributed System o .
. . * Increase the model accuracy to couple with inner UAV dynamics and control systems, as
 Reduced computational burden .
. ) : well as to model noise in the system.

e Resilient to local failures, inc. Subsystem Subsystem Subsystem . . .
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Figure 4: Distributed Predictive Control framework taken from [3]

Laguerre Polynomials as Parametric Curves Key Questions

 How to develop efficient, reliable and secure communication between UAVs for obstacle

Laguerre Polynomials

Key Part: Rather than using single | | — avoidance?
waypoints, use a “compressed” smooth 2 * How to develop legible control systems which would allow analysis and monitoring from an
representation of the planned trajectory. S | . external observer for cyber-security purposes within the context of obstacle avoidance?
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