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Autonomous navigation is a fundamental problem of mobile robots, . .
e . . . . . * Letthe agent learn how to learn new tasks faster by reusing previous
which aims to o identify an optimal or suboptimal path from a starting experience

point to a target point in a Two-Dimensional (2D) or Three-Dimensional

(3D) environment while avoiding obstacles. * Involve two learning loops of training;

| o Outloop learns common knowledge (represented by a neural
Collision Sensing Range Suddenly appeared vehicle network 6) from many tasks.

\ o Inner loop learns policies based on the learned model 6.

Main differences from reinforcement learning:

* In meta-RL, the current state s, last reward r,_; and the last action a,_,
are all incorporated into the policy observation = mg(a,_;,r._1,5:)-

* InRL, only the current state s, is considered = 1,(s,).
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Simulation Framework

Learnlng-Based Na‘"gatlon Methods: State-of- Programmable Engine for Drone Reinforcement Learning Applications
the-art (PEDRA) [1] is utilized as simulation environment.
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* Model generalizability across heterogeneous vehicles

 Fast adaptation to dynamic environments (Short training time for Ongoing and Future Works

new environments) * Implementation of the proposed algorithm will be completed.
 Lifelong learning ability * Adaptability and transferability will be evaluated in indoor and
* Flight/operation safety during learning process outdoor maps.
* The proposed application will be extended for the urban airspace
scenarios.
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