Background: Autonomous Navigation

Autonomous navigation is a fundamental problem of mobile robots, which aims to identify an optimal or suboptimal path from a starting point to a target point in a Two-Dimensional (2D) or Three-Dimensional (3D) environment while avoiding obstacles.

Challenges in AI-Based UAV Navigation

- **Pros:**
 - They can provide scalable solutions for large operation environments.
 - Require little manual-engineering.

- **Cons:**
 - Weak adaptability to new environment
 - Low sample efficiency

Design Goals

- Model generalizability across heterogeneous vehicles
- Fast adaptation to dynamic environments (Short training time for new environments)
- Lifelong learning ability
- Flight/operation safety during learning process

Learning-Based Navigation Methods: State-of-the-art

- Deep learning
- Reinforcement Learning
- Deep Reinforcement Learning

Simulation Framework

Programmable Engine for Drone Reinforcement Learning Applications (PEDRA) [1] is utilized as simulation environment.

Ongoing and Future Works

- Implementation of the proposed algorithm will be completed.
- Adaptability and transferability will be evaluated in indoor and outdoor maps.
- The proposed application will be extended for the urban airspace scenarios.
