Real Arithmetic in TLA+ Towards proving properties in Cyber-Physical Systems

Lancaster University School of Computing and Communications

PhD Researcher: Ovini V.W. Gunasekera Supervisors: Dr. Antonios Gouglidis, Prof. Neeraj Suri

Towards Secure Usage of Autonomous Systems

Autonomous systems are typically considered as Cyber-Physical Systems (CPSs)

Engineering and **Physical Sciences Research Council**

UKRI Trustworthy Autonomous **Systems Hub**

TLAPS Architecture

CPSs are considered safety-critical as undetected faults can result in catastrophic consequences of serious injury or loss of life, therefore establishing **safety** is crucial

Collision-Avoidance safety property of Autonomous Systems

This research work enables automatically proving safety properties of CPSs via a verification tool – TLA+ Proof Manager

Formal Verification using TLA+

- **TLA+** is a formal specification language developed by Leslie Lamport to model systems and programs
- TLA+ toolbox is a software tool which provides an IDE for writing and verifying TLA+ specifications
- This toolbox provides support for model checking via an explicit model checker (TLC) and deductive verification via the TLA+ Proof Systems (TLAPS)

- TLAPS includes a proof manager which interfaces with several backend verifiers such as Z3, Isabelle and Zenon
- In extending the proof manager we enable automatically proving real arithmetic conjectures via Z3-SMT solver (SMT-LIB input) which facilitates proving of real arithmetic conjectures
- As highlighted in the TLAPS architecture diagram, we extended stages of the translation process from untyped TLA+ to multi-sorted SMT-LIB to interpret reals and real arithmetic

Enabling translation from TLA+ to SMT-LIB

- Two types of translation
 - Typed Encoding: Type inference algorithm and TLA+ type system assigns types to TLA+ expressions

Why TLA+

- TLA+ has gained attention from the academic community and industry and is used by major companies such as Amazon, Intel and Microsoft
- Based on Zermelo-Frankel set theory, the language enables specification and ulletverification of wide range of systems from concurrent to distributed systems
- TLA+ is expressive enough to model hybrid systems i.e. systems which combine discrete and continuous behaviours (this includes CPSs)

- Untyped Encoding: Delegates type inference to SMT-solvers
- If typed encoding fails to infer types to TLA+ expressions, type inference is delegated to SMT solvers

Extensions to typed encoding process

- Extended TLA+ type system by introducing type *Real* and typing rules to enable the interpretation of real arithmetic
- Constraint generation and constraint solving phases of the TLA+ type inference algorithm was extended to interpret real arithmetic

Extensions to untyped encoding process

- Declared uninterpreted functions to embed SMT reals into a sort representing TLA+ values
- Introduced axioms to ensure soundness and consistency in translation during untyped encoding

Example of a CPS modelled as a hybrid automaton

- TLAPS currently supports automatically proving theorems containing integer arithmetic
- Verification of properties in CPSs require modelling continuous state evolution and thus the representation of real numbers and real arithmetic is needed
- We extended the TLA+ Proof Manager to support proving real arithmetic conjectures to ultimately facilitate proving safety properties of CPSs

	TLAPS		Extended TLAPS	
Operators	Real	Int	Real	Int
Addition $(+)$ Subtraction $(-)$ Multiplication $(*)$	×	\checkmark	\checkmark	\checkmark
Integer division $(\langle div \rangle$ Modulus (%)	×	\checkmark	×	\checkmark
Division (/)	×	X	\checkmark	×
Range ()	×	\checkmark	\checkmark	\checkmark
Unary minus $(-)$	×	\checkmark	\checkmark	\checkmark
Comparison $(<, >, \le, \ge)$	×	\checkmark	\checkmark	\checkmark
Exponentiation $()$	×	X	×	×

Sample of supported arithmetic operations in TLAPS and extended TLAPS

We acknowledge Dr. Andrew Sogokon in this work

This work is supported by the Engineering and Physical Sciences Research Council [grant] number: EP/V026763/1]