Rethinking Self-supervised Learning for Cross-domain Adversarial Image Recovery *Lancaster University*

Research Fellow: Dr. Yi Li Investigators: Prof. Plamen Angelov, Prof. Neeraj Suri

Self-supervised Learning

Adversarial Attacks to Autonomous Systems

Proposed Framework

Experimental Results

Ongoing and Future Works

- The proposed framework is potentially applied in other downstream tasks, e.g., road condition detection.
- Ablation study of the proposed algorithm will be provided.

This work is supported by the Engineering and Physical Sciences Research Council [grant number: EP/V026763/1]

Proposed Framework

Experimental Settings

◆ CAE Training: 10k images from the COCO dataset ◆ AAE Training: 40k images from the CIFAR-10 dataset ◆ Test: 10k images from the ImageNet-R dataset

Autonomous Systems (AS) are usually embodied as *Cyber-Physical Systems* (CPS) in which adversarial attacks can lead to catastrophic consequences, such as loss of life or serious injury, thus many autonomous systems are **safety-critical**.

Engineering and Physical Sciences Research Council

UKRI Trustworthy Autonomous Systems Hub

Autonomous Systems Clean Samples

Adversarial Samples

Right Detection

Wrong Detection

What is self-supervised learning (SSL):

• Unlabeled data is processed to obtain useful representations that can help with downstream learning tasks.

• An intermediate form of unsupervised and supervised learning. Why we need SSL-based adversarial attack recovery?

- The clean images X_c from the public landing runway dataset are fed into the CAE to learn the features Z_c in the latent space.
- In CAE, both E_{CAF} and D_{CAF} consist of four 1-D convolutional layers. In E_{CAF} , the size of the hidden dimension decreases sequentially from 512 -> 256 -> 128 -> 64. Accordingly, the dimension of the latent space is set to 64, with the stride of 1 and the kernel size of 7 used for the convolutions. Different from E_{CAF} , the decoder D_{CAF} scale up the latent dimensions sequentially.

 D_{CAE}

- Supervised training of the networks requires large sets of labelled paired data. However, these data is difficult or expensive to obtain.
- A trained model may suffer from performance degradation when deployed in previously unseen conditions e.g., a mismatch of attacks and datasets between the training and testing datasets.
- The weights of the CAE are frozen in this stage.
- The AAE learns a shared latent space between clean images and adversarial images.

The trained E_{AAF} and D_{CAF} are combined as the final model

What do we propose in this work?

◆ Backbones: CNN ◆ Attack algorithms: FGSM, PGD, SSAH, DeepFool, BIM, CW, JSMA

- We propose the clean image autoencoder (CAE) to learn the latent representations of clean images.
- We propose the adversarial image autoencoder (AAE) to learn a shared latent space between the unpaired clean images and adversarial images to boost the generalization ability.
- The input of two autoencoders are clean images and adversarial images, respectively. However, they are unpaired, i.e., they are randomly selected different domains (datasets and attack algorithms).

Clean image autoencoder training

Reconstruction

Adversarial image autoencoder training

Recovery Ratio Calculation

Clean or Attacked E_{AAE} D_{CAE} Reconstruction

- Results on the Image-R dataset.
- Supervised: ESMAF, SSAE, sim-DNN, DTBA, RR
- Self-supervised: Tico, MAE, Mugs, Unicom, DINOv2, SimCat, DRR

Visualizations

