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Adversarial Attacks to Autonomous Systems

Autonomous Systems (AS) are usually embodied as Cyber-Physical Systems  Reconstruction  Daag (Tnunable Ems. ‘rozen)

(CPS) in which adversarial attacks can lead to catastrophic consequences, =--------==-----------moooom oo
such as loss of life or serious injury, thus many autonomous systems are Test stage

safety-critical. Clean or Attacked Eaar Dcag Reconstructmn
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> Recovery Ratio Calculation

TR Experimental Settings
& Backbones: CNN

€ Attack algorithms: FGSM, PGD, SSAH,
DeepFool, BIM, CW, JSMA

€ CAE Training: 10k images from the COCO dataset
€ AAE Training: 40k images from the CIFAR-10 dataset
€ Test: 10k images from the ImageNet-R dataset
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Experimental Results

_ Recovery Ratio (%)

s Clean FGSM PGD  SSAH DeepFool BIM CW JSMA Avr

: ESMAF  70.8 527 67.5 629 39.7 35.9 37.2 410 51.0

Adversa”al Samples Wrong Detection SSAE 740 585 67.0 69.2 41.5 39.4 416 413 54.1
Self-supervised Learning Sim-DNN  76.2 60.7 723  71.0 44.8 467 499 50.2  59.0
DTBA  79.2 592 755 749 51.4 53.8 56.0 59.9 63.8

What is self-supervised learning (SSL): RR 86.5 62.7 79.0 76.2 671 587 609 713 70.3
* Unlabeled data is processed to obtain useful representations that can TiCo 745 36 686 6592 45 1 445 431 579 CS66
help with downstream learning tasks. MAE 822 596 755 74.4 542 503 514 628 63.8

* Anintermediate form of unsupervised and supervised learning. Mugs 834 572 759 767 56.0 51.1 50.8 643 64.4
Why we need SSL-based adversarial attack recovery? Unicom 86.4 59.8 76.2  79.3 61.0 55.5 58.4 68.2  68.1
» Supervised training of the networks requires large sets of labelled DINOv2 87.5 616 79.4 783 645 571 579 716  69.7
paired data. However, these data is difficult or expensive to obtain. SimCat 85.1 580 752 77.0 56.4 56.5 553 69.6 66.6

* Atrained model may sufter from performance degradation when DRR 87.2 648 796 782 66.9 60.7 601 703 710
Ours  87.9 659 80.0 79.7 69.1 61.5 61.8 724 723

deployed in previously unseen conditions e.g., a mismatch of attacks
and datasets between the training and testing datasets.

What do we propose in this work?

» We propose the clean image autoencoder (CAE) to learn the latent
representations of clean images.

* We propose the adversarial image autoencoder (AAE) to learn a shared ‘
latent space between the unpaired clean images and adversarial
images to boost the generalization ability.

* Theinputof two autoencoders are clean images and adversarial
images, respectively. However, they are unpaired, i.e., they are
randomly selected different domains (datasets and attack algorithms). °

Proposed Framework

Visualizations

Results on the Image-R
dataset.

* Supervised: ESMAF,
SSAE, sim-DNN, DTBA,
RR

Self-supervised: Tico,
MAE, Mugs, Unicom,
DINOv2, SimCat, DRR

Clean image autoencoder training 0

| " Seen attack + Seen dataset
B Scen attack + Unseen dataset
I Unseen attack + seen dataset
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* The cleanimages X.from the public landing runway dataset are fed into L fmN CEn CER ¢ | il |

the CAE to learn the features Z. in the latent space. AL saE el DTBA NAEMus Ui DINOV. Sinca

* In CAE, both E-,e and D, consist of four 1-D convolutional layers. In
Fae, the size of the hidden dimension decreases sequentially from 512 -
>256 -> 128 -> 64. Accordingly, the dimension of the latent space is set
to 64, with the stride of 1 and the kernel size of 7 used for the
convolutions. Different from E,¢, the decoder D,¢ scale up the latent
dimensions sequentially.
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Ongoing and Future Works

* The proposed framework is potentially applied in other downstream
tasks, e.g., road condition detection.
* Ablation study of the proposed algorithm will be provided.
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