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Abstract—Adversarial attacks can cause misclassifcation in 
machine learning pipelines, posing a signifcant safety risk in 
critical applications such as autonomous systems or medical 
applications. Supervised learning-based methods for adversarial 
sample recovery rely heavily on large volumes of labeled data, 
which often results in substantial performance degradation when 
applying the trained model to new domains. In this paper, differ-
ing from conventional self-supervised learning techniques such as 
data augmentation, we present a novel two-stage self-supervised 
representation learning framework for the task of adversarial 
sample recovery, aimed at overcoming these limitations. In the 
frst stage, we employ a clean image autoencoder (CAE) to 
learn representations of clean images. Subsequently, the second 
stage utilizes an adversarial image autoencoder (AAE) to learn 
a shared latent space that captures the relationships between 
the representations acquired by CAE and AAE. It is noteworthy 
that the input clean images in the frst stage and adversarial 
images in the second stage are cross-domain and not paired. 
To the best of our knowledge, this marks the frst instance of 
self-supervised adversarial sample recovery work that operates 
without the need for labeled data. Our experimental evaluations, 
spanning a diverse range of images, consistently demonstrate 
the superior performance of the proposed method compared to 
conventional adversarial sample recovery methods. 

Index Terms—Self-supervised learning, adversarial sample re-
covery, autoencoder, representation learning, cross-domain 

I. INTRODUCTION 

Deep learning techniques are seeing proliferating usage in 
diverse applications such as image segmentation [1], audio 
signal processing [2], and natural language processing (NLP) 
[3] among many others [4]. However, adversarial attacks ma-
liciously attempt to manipulate data in a way that may appear 
normal to the human eye but can lead to misclassifcation in 
a machine learning pipeline. Particularly, adversarial attacks 
in neural network training encounter several characteristic 
challenges. Firstly, adversarial attacks expose the vulnerability 
of neural networks to small, carefully crafted perturbations in 
input data [5]. This means that models trained conventionally 
may not be robust and could fail in real-world scenarios where 
data may be slightly altered or noisy. Secondly, adversarial 
attacks are often transferable, meaning an attack developed 
against one model can be successful against another model 
with similar architecture or even different datasets. This makes 
it challenging to create robust defenses. Thirdly, when neural 
networks are trained to defend against specifc adversarial 

attacks, they may become less effective at generalizing to real-
world, non-adversarial data. This trade-off between robustness 
to attacks and generalization to normal data is a signifcant 
drawback. 

Adversarial sample recovery is a critical subfeld within 
machine learning security, aiming to enhance neural network 
security by discerning attacks through differences between 
adversarial and clean image samples. It is applied in various 
real-world scenarios, such as autonomous driving systems, 
object detection, medical image processing, landing runway 
detection, and robotics [4]. Recent advances in deep learning 
have spurred the development of various approaches [6]– 
[10] for detecting adversarial attacks. These approaches are 
predominantly trained using a supervised methodology, involv-
ing the provision of a large number of labeled adversarial 
and normal samples as input to the neural network. The 
model is then trained to reconstruct the corresponding clean 
sample and compare it with the input sample to provide a 
detection or recovery result. However, supervised learning-
based adversarial sample recovery approaches exhibit three 
primary drawbacks. 

Firstly, labeling human-imperceptible adversarial attacks on 
images can be challenging and time-consuming, potentially 
introducing errors, especially when annotators lack domain 
familiarity with the task. Secondly, when trained adversarial 
sample recovery models are deployed in previously unseen 
conditions, which may include encountering novel attack 
algorithms and datasets, there is a strong likelihood of a 
mismatch between the training and test conditions. In such 
cases, we lack the ability to leverage recorded test adversarial 
images to improve the model’s performance in the unseen 
test setting. Thirdly, supervised learning in machine learning 
involves learning a function that maps inputs to outputs based 
on sample input-output pairs. Therefore, supervised learning 
techniques are typically task-specifc, making it challenging to 
adapt the trained model to other tasks during the test stage. 

Contributions: To address these limitations, we propose 
an approach based on self-supervised learning (SSL) for 
adversarial sample recovery. Our method assumes access to 
a training set comprising clean image examples. Initially, we 
employ these examples to learn a suitable representation for 
clean images in an unsupervised manner. Subsequently, we 
use this learned representation in conjunction with adversarial 
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images to establish a mapping from the domain of adversarial 
samples to that of clean samples. These advancements enable 
the development of adversarial sample recovery systems that 
can autonomously learn without requiring human intervention, 
thereby mitigating the various constraints and drawbacks asso-
ciated with supervised adversarial sample recovery networks. 

II. RELATED WORKS 

In this section, a literature review is provided for basic 
attack and recovery techniques related to machine learning 
prior to introducing contemporary supervised and SSL-based 
adversarial sample recovery methods. 

A. Attacks 

Recent studies demonstrate that trained neural networks 
can be compromised by adversarial samples or attacks with 
human-imperceptible perturbations [5], raising safety concerns 
about the deployment of these networks in safety-critical 
applications, including autonomous driving, medical image 
processing, and clinical settings [11]. According to the threat 
model, existing adversarial attacks can be categorized into 
white-box, gray-box, and black-box attacks. The difference 
between the three models lies in the knowledge of the adver-
saries. In the frameworks of these threat models, a number of 
attack algorithms for adversarial sample generation have been 
proposed, such as Fast Gradient Sign Method (FGSM) [12], 
Projected Gradient Descent (PGD) [13], Semantic similarity 
attack on high-frequency components (SSAH) [14], Carlini 
& Wagner (CW) [15], DeepFool [16], basic iterative method 
(BIM) [17], and Jacobian-based Saliency Map Attack (JSMA) 
[18]. For example, as introduced by [14], the SSAH attack 
concentrates in semantic similarity on feature representations. 
The high-frequency components of an image contain trivial 
details and noise, whereas the low-frequency components 
represent basic information. Therefore, the low-frequency 
constraint is introduced to limit perturbations within high-
frequency components, thus ensuring perceptual similarity 
between adversarial examples and the original images. 

B. Supervised Adversarial Sample Recovery 

Developing methods to detect and recover attacks against 
adversarial examples plays a crucial role in ensuring the robust 
performance of trained networks. These methods are generally 
categorized into two main approaches: supervised techniques 
and SSL-based techniques. 

As one of supervised detection and recovery techniques 
[10], [19]–[23], Qi et al. propose a local neural network as 
a substitution of the remote target network is trained [20]. 
The local model estimates the misclassifcation probability of 
the perturbed examples in advance and deletes those invalid 
adversarial examples. Li et al. frstly implement fuzzy logic on 
the decoder to detect adversarial attacks [10]. The loss between 
the prediction and label is converted in a fuzzy value to better 
describe the similarity. Bana et al. introduce a robust recovery 
(RR) algorithm to recover adversarial examples by generating 
negative noise and reconstructing the entire image [23]. While 

these supervised methods achieve high benchmarks, their 
heavy dependence on labels and datasets constrains their use 
in real-world applications. 

C. Self-supervised Learning 

Differing from supervised learning, self-supervised adver-
sarial sample recovery algorithms do not require the access to 
any paired training data, i.e., adversarial and normal images. 
To achieve this, researchers learn features from a large number 
of clean images and fne-tune with labels for the downstream 
task, i.e., adversarial attack detection or recovery. Zhang et al. 
train an autoencoder with Disentangled Representation-based 
Reconstruction (DRR) over both correctly paired labels and 
incorrectly paired labels to reconstruct benign and counterex-
amples [24]. This mimics the behavior of adversarial examples 
and can reduce the unnecessary generalization ability of au-
toencoder. Moayeri et al. classify adversarial attacks to their 
respective threat models, based on a linear model operating on 
the embeddings from a pre-trained self-supervised encoder, 
SimCat [25]. These SSL-based adversarial attack detection 
methods, as mentioned earlier, achieve promising accuracy 
across commonly used datasets. However, these methods have 
two limitations. Firstly, these models rely on labels in the 
training stage. For example, DRR extracts labels and features 
from both clean and adversarial images, calculating the loss 
between the predicted label and the true label to train the 
autoencoder. Secondly, these methods lack consideration of 
the possibility that the trained model may be employed across 
different domains, while it is a common scenario in the real 
world. These limitations are addressed by the proposed SSL 
pipeline in this work. 

III. PROPOSED METHOD 

A. Preliminaries 

In this section, we discuss the training of each network 
component of our scheme. In the proposed method, two 
variational autoencoders (VAEs) [26], [27], namely, the CAE 
and the AAE, are progressively utilized to reconstruct clean 
images and adversarial images, respectively. In CAE, the 
encoder and decoder are denoted as ECAE and DCAE, while 
in AAE, they are denoted as EAAE and DAAE, respectively. In 
the test stage, trained EAAE and DCAE are combined to form the 
fnal model, which recover the image with potential attacks. It 
is worth noting that the clean images used in the CAE are not 
used for generating the adversarial images in the AAE to learn 
the shared feature space. Besides, the adversarial images used 
in the AAE are unseen in the test stage for the fair evaluation. 

B. Stage 1: Clean Image Autoencoder 

The training pipeline of the CAE is presented in Fig. 1. 
Initially, as the input of the CAE, the clean images are fed 

into the ECAE. Then, the features are extracted from the clean 
images. The decoder DCAE obtains the latent representation 
of clean images to reconstruct the images. To achieve that, 
the CAE is trained by minimizing an appropriate measure 
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Fig. 1. Proposed pipeline of the clean image autoencoder (CAE). The clean 
images are fed into the CAE to produce the reconstruction. 

of discrepancy between the input clean image XS and its 
reconstruction X̂S from DCAE with a hyper-parameter λ1: 

LCAE = ∥XS − X̂  
S∥22 + λ1 · LKL−CAE (1) 

where LKL−CAE is Kullback–Leibler (KL) loss [28] to learn 
a latent representation that is close to a zero-mean normal 
distribution. The L2 norm of the loss is presented as ∥ · ∥22. 
The hyper-parameter λ1 is empirically set to 0.001, the 
supportive diagnostic experiment will be presented later. By 
reconstructing the images, the CAE is trained to learn a latent 
representation of clean images. 

As presented in Fig.1, in CAE, both ECAE and DCAE consist 
of four 1-D convolutional layers. In ECAE, the size of the 
hidden dimension decreases sequentially from 512 → 256 → 
128 → 64. Accordingly, the dimension of the latent space is 
set to 64, with the stride of 1 and the kernel size of 7 used 
for the convolutions. Different from ECAE, the decoder DCAE 
scale up the latent dimensions sequentially. We will show the 
experimental results to confrm the confguration in Section 
IV-D. 

C. Stage 2: Adversarial Image Autoencoder 

The training process of the AAE is marked from 1 to 5 

in Fig. 2. 

Fig. 2. Proposed pipeline of the adversarial image autoencoder (AAE). In 
this period, the AAE is trained to produce the estimated adversarial images, 
while the weights of the CAE are frozen. 

Once the CAE is trained with the clean images, we now 
fx the weights of the trained CAE and use it in the AAE 
training with the adversarial images. Different from the CAE, 
the AAE only needs access to unseen adversarial images. Note 
that the adversarial images in the AAE are not generated from 
the clean images in the CAE. The feature is extracted from the 
adversarial images and fed to EAAE. Consequently, the latent 
representation of the adversarial images is obtained as the 
output of EAAE and exploited to modify the loss functions and 

learn a shared latent space between the clean image feature 
representation ZS and adversarial images representation ZA 

as the core idea of this work. 
To achieve this, the adversarial image representation is 

passed through the decoder of the CAE to get the enhanced 
version of the adversarial image representation as the process 

3 in Fig. 2: 
X̃ 

C = DCAE(ZA) (2) 

Benefting from the learned clean image representation, a 
mapping from the adversarial image to the corresponding 
clean version is learned with the latent representation of the 
clean image feature. Then, the estimated adversarial image 
representation is obtained from the trained ECAE as the process 

4 in Fig. 2: 
Ẑ 

A = ECAE(X̃ 
C) (3) 

Furthermore, DAAE is trained to produce the estimated the 
adversarial image as: 

X̂ 
A = DAAE(ẐA) (4) 

With these relationships, we now enforce that the cycle re-
construction of the adversarial image X̂ 

A resembles the input 
adversarial image XA. Likewise, we also enforce that the two 
latent representations before and after the cycle loop through 
the CAE are close. 

The overall loss to train the AAE is a combination of three 
loss terms with hyper-parameter λ2: 

LAAE = λ2 · LKL-AAE + Lcycle (5) 

Similarly, the hyper-parameter λ2 is empirically set to 0.001. 
Moreover, LKL-AAE denotes the KL loss and is applied to 
train the latent representation closed to a normal distribution. 
Besides, the cycle loss Lcyc consists of two loss terms, LXA 

and LZA : 

Lcycle = ∥XA − X̂ 
A∥2 

2 + 
ZA − ẐA 

 
2 

(6) 
2 

where LA refers to the loss between the input adversar-
ial image and the corresponding reconstruction from DAAE. 
Moreover, the loss between the latent representation and the 
corresponding reconstruction is presented as LZA . Finally, the 
overall loss LAAE is utilized in AAE to improve the adversarial 
attack revocery performance. 

The AAE network follows an architecture similar to CAE. 
EM consists of six 1-D convolutional layers where the hidden 
layer sizes are decreased from 512 → 400 → 300 → 200 
→ 100 → 64, while those of the decoders increase inversely. 
Again, the experimental results will be provided in Section 
IV-D to confrm the confguration. 

D. Test Stage 

In the test stage, the feature of the input images is extracted 
and fed to the trained EAAE. Then, the latent representation of 
the input images is obtained. Because the decoder DCAE are 
trained to produce the clean image, the input image representa-
tion is fed to the decoder to recover the original image. Finally, 
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the recovery ratio is calculated between the input image and 
reconstructed image to evaluate the adversarial image recovery 
performance of the proposed model. The pipeline of the test 
stage is presented in Fig. 3. 

Fig. 3. Test stage pipeline. The trained EAAE and DCAE are combined as the 
fnal model. 

IV. EXPERIMENTAL RESULTS 

A. Datasets and Attacks 

We extensively perform experiments on several public 
datasets, including ImageNet-R [29], Canadian Institute For 
Advanced Research-10 (CIFAR-10) [30], and Microsoft Com-
mon Objects in Context (COCO) [31]. We randomly select 
10,000 images from COCO to train the CAE. Then, 40,000 
images from CIFAR-10 are randomly selected to train the 
AAE. Furthermore, we randomly select 10,000 images from 
ImageNet-R to evaluate the adversarial sample recovery accu-
racy of competitors and proposed model. 

We select aforementioned attacks in Section II because 
they are robust to novel adversarial attack detection and 
recovery techniques [14], [19]. We randomly select two attack 
algorithms to generate the adversarial images for the AAE 
training and fnal model evaluation, respectively. Parameters 
of all the seven attacks exploited in the experiments are shown 
in Table I. 

TABLE I 
PARAMETERS OF SEVEN ADVERSARIAL ATTACKS 

Attack Parameters 
FGSM ϵ=0.008 
PGD ϵ=0.01, α=0.02, Steps=40 

SSAH α=0.01 
DeepFool Steps=20 

BIM ϵ=0.03, α=0.01, Steps=10 
CW C=2, Kappa=2, Steps=500, learning rate=0.01 

JSMA γ=0.02 

B. Competitors and Performance Measure 

In addition, the proposed method is evaluated and compared 
to state-of-the-art competitor models. Firstly, we select four su-
pervised adversarial attack detection and recovery techniques 
[19]–[23] as the original implementations in the literature 
but with same data as the proposed method. Secondly, we 
use fve pre-trained self-supervised models [32]–[36] which 
are state-of-the-art in image processing tasks. Thirdly, two 
self-supervised adversarial attack detection and recovery tech-
niques [24], [25] are adopted. For a fair comparison, we 
reproduce these models with same data as the proposed 
method. 

In the experiment, the recovery rate (RR) is used as the 
performance measure, calculated as the ratio of correctly 
recovered pixels to all pixels. 

C. Model Confguration 

We propose a self-supervised training pipeline to address 
the limitations of supervised pipelines, therefore, the backbone 
of autoencoders is out of scope of this paper. We simply 
conduct experiments to demonstrate the trade-off between 
performance improvement and network depth, specifcally, 
varying the number of convolutional layers. 

The proposed model is trained by using the SGD optimizer 
with a weight decay of 0.0001, a momentum of 0.9, and 
a batch size of 256. We train the CAE for 700 epochs. 
Then, we train the AAE for 1500 epochs, where we warm-
up the network in the frst 300 epochs by only using the 
adversarial image reconstruction loss LA. The initial learning 
rate is 0.03, and is multiplied by 0.1 at 500 and 1000 epochs. 
All experiments are run on the High End Computing (HEC) 
Cluster with Tesla V100 GPUs. 

D. Diagnostic Experiment 

An ablation study of hyper-parameters λ1 and λ2 is con-
ducted on the ImageNet-R dataset. Fig. 4 shows downstream 
attack recovery accuracy when they varies from 0.0001 to 
0.1. Each data point being an average of 70,000 experiments 
(10,000 images × 7 attacks). 

Fig. 4. Ablation study for hyper-parameters λ1 and λ2. 

According to Fig. 4, the value of 0.001 is optimal for 
both λ1 and λ2. The recovery accuracy achieves 70.1% at 
the peak. We conduct experiments to demonstrate the trade-
off between performance improvement and network depth, 
specifcally, varying the number of convolutional layers in two 
autoencoders, i.e., CAE and AAE. 

Fig. 5. Ablation study for number of convolutional layers in the CAE and 
AAE. 

https://rate=0.01


  
                

     
             

             
             

              
              

              
              
             
              
              
             

             
             

           

  
         

  
          

           
           

           
           

           
           
           
           
           
           

           
           

          

         
       

          
            

             
            

            
    

    

          
         

          
         

            
 
        

         
         

           
         

        
 

         
         

         
           

          
           

           
          

          
        

       
         
       

       
        

         
        

       
          

   

        
        
        

            
          

 

TABLE II 
COMPARISON WITH SEEN ATTACK ALGORITHMS ON THE IMAGENET-R DATASET. AVR DENOTES THE AVERAGE RECOVERY ACCURACY ((%)). 

Algorithm & Network DR (%) 
Method Supervised Pre-training Backbone Clean FGSM PGD SSAH DeepFool BIM CW JSMA Avr 

ESMAF [22] ✓ ✗ ResNet-101V2 70.8 52.7 67.5 62.9 39.7 35.9 37.2 41.0 51.0 
SSAE [21] ✓ ✗ ResNet-34 74.0 58.5 67.0 69.2 41.5 39.4 41.6 41.3 54.1 

sim-DNN [19] ✓ ✓ VGG16+DNN 76.2 60.7 72.3 71.0 44.8 46.7 49.9 50.2 59.0 
DTBA [20] ✓ ✓ VTCNN-2 79.2 59.2 75.5 74.9 51.4 53.8 56.0 59.9 63.8 

RR [23] ✓ ✓ VGG-13 86.5 62.7 79.0 76.2 67.1 58.7 60.9 71.3 70.3 
TiCo [32] ✗ ✓ Mask R-CNN+FPN 74.5 53.6 68.6 65.2 45.1 44.5 43.1 57.9 56.6 
MAE [33] ✗ ✓ ViT-L/16 82.2 59.6 75.5 74.4 54.2 50.3 51.4 62.8 63.8 
Mugs [34] ✗ ✓ ViT L/14 83.4 57.2 75.9 76.7 56.0 51.1 50.8 64.3 64.4 

Unicom [35] ✗ ✓ ViT L/14 86.4 59.8 76.2 79.3 61.0 55.5 58.4 68.2 68.1 
DINOV2 [36] ✗ ✗ ViT g/14 87.5 61.6 79.4 78.3 64.5 57.1 57.9 71.6 69.7 
SimCat [25] ✗ ✓ ResNet-50 85.1 58.0 75.2 77.0 56.4 56.5 55.3 69.6 66.6 
DRR [24] ✗ ✓ VGG-16 87.2 64.8 79.6 78.2 66.9 60.7 60.1 70.3 71.0 

Ours ✗ ✗ CNN 87.9 65.9 80.0 79.7 69.1 61.5 61.8 72.4 72.3 

TABLE III 
COMPARISON WITH UNSEEN ATTACK ALGORITHMS ON THE IMAGENET-R DATASET. 

DR (%) 
Method Clean FGSM PGD SSAH DeepFool BIM CW JSMA Average 

ESMAF [22] 61.4 40.6 58.0 48.2 22.1 20.6 25.6 35.8 39.0 
SSAE [21] 63.0 42.9 59.1 54.7 29.2 26.5 33.0 36.0 43.1 

sim-DNN [19] 64.5 42.5 60.4 57.2 34.9 30.5 34.8 38.1 45.4 
DTBA [20] 68.9 42.0 65.7 65.8 35.3 31.0 37.2 40.1 48.3 

RR [23] 74.6 50.8 70.2 72.7 43.8 34.3 49.6 58.9 56.9 
TiCo [32] 74.4 53.9 68.2 64.8 45.8 45.1 44.0 57.2 56.7 
MAE [33] 82.6 59.4 75.5 73.9 54.6 50.5 51.2 62.9 63.8 
Mugs [34] 83.3 57.0 75.2 76.9 55.7 50.1 51.4 63.9 64.2 

Unicom [35] 86.0 59.6 76.2 78.8 61.2 55.4 58.5 68.0 68.0 
DINOV2 [36] 87.6 62.0 79.2 78.4 64.8 57.2 57.5 71.5 70.0 
SimCat [25] 83.0 56.7 73.1 73.8 55.6 55.2 53.9 69.0 65.0 
DRR [24] 87.0 64.0 80.1 78.1 65.7 60.3 59.4 70.9 70.7 

Ours 87.9 64.1 79.0 78.6 67.5 59.8 59.9 69.8 70.8 

Fig. 5 compares the number of convolutional layers in 
two autoencoders against recovery accuracy on ImageNet-R. 
As Fig. 5 shows, recovery accuracy starts to increase with 
NCAE&NAAE = 3 and reaches the peak around NCAE = 4 and 
NAAE = 6, but performance is fairly stable for 4 ≤ NCAE ≤ 
6 and 6 ≤ NAAE ≤ 9. Therefore, the results indicate that 
NCAE = 4 and NAAE = 6 offer the best trade-off, validating 
the chosen implementation setting. 

E. Comparison to State-of-the-Arts 

We conduct two experiments in this section. In the frst 
experiment, we use the same attack but different datasets 
between the training and test stages to evaluate and compare 
the recovery ratio of competitors and proposed methods. Table 
II shows the results, each of them is the average of 10,000 
images. 

Table II shows the averaged adversarial sample recovery 
performance of the proposed method as compared to [19]– 
[25], [32]–[36] on the ImageNet-R dataset. From Table II, 
it can be observed that in all the evaluated models, the 
proposed model achieves 87.9% and 70.1% for clean and 
adversarial images recovery, respectively, which offers the best 
effectiveness. 

In the second experiment, we evaluate both different attack 
algorithms and datasets between the training and test stages 

as a more challenging scenario. In the data pre-processing, 
we select one attack algorithm to generate the test data and 
randomly select the other attack algorithm from the rest of 
Table I to generate the training data. It is highlighted that 
we use the same generated data for all competitors and the 
proposed model for a fair comparison. Table III shows the 
results, each of them is the average of 10,000 images. 

Table III shows that our pre-training signifcantly improves 
results over self-supervised vision learning models and su-
pervised pre-training. Our model is 0.8 points higher than 
DINOV2 (70.8% vs. 70.0%). Our self-supervised learning 
models also outperforms the supervised models. These obser-
vations are consistent with those in ImageNet-R. Moreover, 
comparing the results to Table II, supervised models suffer 
a signifcant accuracy degradation with unseen attacks, while 
self-supervised models perform more consistent. We conduct 
more experiments to confrm this point in the next section. 

F. Robustness Evaluation 

We perform experiments on ImageNet-R to evaluate the 
robustness of the supervised and self-supervised models on 
adversarial attack detection. Fig. 6 shows the detection accu-
racy results (in %), each of them is the average of 80,000 
experiments (10,000 images × 8 (1 clean + 7 attack algo-
rithms)). 
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Fig. 6. Robust study of supervised and self-supervised adversrial image recovery. 

It can be observed that: (1) The adversarial sample recovery 
accuracy on unseen attack algorithms and datasets is lower 
compared to the seen attack utilized in both the training and 
test stages, primarily due to differences in distributions of 
datasets. (2) When compared to supervised learning-based 
methods [19]–[23], the proposed SSL representation learning 
method experiences relatively less performance degradation. 
The reason is that unlike supervised learning models, SSL 
models extract the underlying sub-class structure from the aug-
mented data distribution and encodes it into the embeddings. 
This guarantees the robustness of the downstream task. (3) The 
proposed model shows the best performance in challenging 
scenarios because it learns mapping cross-domain adversarial 
samples to the domain of clean image representation via the 
shared latent space between two autoencoders. 

G. Visualizations 

In this section, we present qualitative results demonstrating 
the recovery of attacked image samples on ImageNet-R in Fig. 
7. Particularly, we compare the proposed model to a baseline 
autoencoder with the same confguration as the AAE. 

After comparing the recovery results of the proposed model 
and the baseline, the reconstructions obtained via the proposed 
method, are closer to original images, which confrms the 
effcacy of the proposed method. 

H. Discussion 

The above detailed experimental results confrm that the 
proposed self-supervised method with a shared latent space 
can further improve adversarial sample recovery performance 
in different scenarios, i.e., seen or unseen datasets and attack 
algorithms, compared to the state-of-the-art methods. 

Moreover, a signifcant advantage of the proposed pipeline 
is its independence from labels. The two autoencoders are 
dedicated to different tasks; the CAE learns the clean image 
representation, and the AAE learns the adversarial image 
representation. We ensure that the encoder learns the cross-
domain representation even though the input to the two 

Fig. 7. Qualitative adversarial sample recovery results on ImageNet-R. From 
left to right: input images, images attacked by FGSM, feature maps of the 
proposed model, recovery results of the baseline, recovery results of the 
proposed model. 

autoencoders consists of unpaired images. This ensures the 
robustness of the downstream task. 

Furthermore, an additional advantage is the reusability of 
the pre-trained CAE. It can be employed to recover adversarial 
samples with different distributions, irrespective of the nature 
of the adversarial attack algorithms. 

V. CONCLUSION 

In this paper, we have proposed a self-supervised adversarial 
sample recovery method, a simple yet effective replacement 
to the conventional supervised pipelines. We frstly trained 
the CAE using clean images, learning an appropriate latent 
representation. This latent representation was then used in a 
downstream adversarial sample recovery task to train the AAE 
for adversarial images so that the two autoencoders shared 
their latent spaces. This allowed us to map the domain of 
adversarial images to the domain of clean images. Differ-
ing from conventional SSL-based adversarial attack recovery 



          
       

         
     

 

       
      

 

             
        

     
              

       
          

  
              

           
        

              
           

                
        

          
            

       
         

  
            

       
      

              
           

        
    

                 
        

       
 

             
        

   
              

          
           

           
        

    
             

         
       

               
       

         
  

            
        

           
          

        
  

            
      

             
          

       
           

        
        

              
        
           

  
           

         
        

        
  

                
         

        
      

             
        
  

              
      

    
           

        
        

                 
       

        
         

             
       

             
         

          
             

             
           

      
      

           
   

             
            

         
    

             
        

       
  

               
        

         
                 

       
  

                
         

        
   

             
            
            

            
          

       

works, the proposed pipeline does not require labels for the 
mode training. Our evaluation on cross-domain experiments 
over different datasets and attacks has demonstrated the high 
effectiveness of the proposed method. 
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