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Mission Control for Secure Trustworthy Autonomous Systems requires flexible but reliable real-
time optimal decision making and monitoring to handle a wide range of attacks

Critical Tasks:

• Handling Communication Errors and Security Constraints

• Assessing Control Faults and Performance Limitations

• Handling Environmental Limitations (Uncertainty/Dynamic Obstacles/No-Fly zones)

• Avoiding and Handling Electronic/Electro-magnetically induced attacks

• Achieving Deterministic/Real-Time Performance for the Optimal Decision Making

• Handling and Detecting Security Threats under Learning-based Scenarios

:RS-2A: Securing the Mission Surface

Key Challenges for Trustworthy Learning-based 
Mission Control under Security Constraints

RS-2B: Securing the Control Surface

Secure and real-time communications serve as the fundamentals for Autonomous Systems to 
achieve reliable control and mission delivery. 
Attack vectors:
• Key intercept
• Active interference (jamming)
• Passive eavesdropping
• Erode secrecy rate

RS-2C: Physical Layer Security for AS

How to do this in a “trustworthy” fashion?
• Safe, Secure and Reliable

Attack Definitions
• Sensing and Communication Errors
• Loss of an actuator
• Environmental conditions
• Electronic attacks
• Electromagnetic deception
• Injecting false pattern into data

Interpretability => Explainable and 
Trustworthy AI
• Physics Informed Deep Learning
• Ability to identify system behaviour
• Generalization capability
• Anomaly detection/classification

Continual Assurance
• Detect and avoid
• Learning enabled context

Adaptive Security Strategies
•Deep Reinforcement Learning Based Adaptive Controls

Key Solution Cornerstones in Learning-Enabled Context

Innovation: exploit unique, 
dynamic, recipro CSIs between 
entities due to radio 
propagation nature

Advantages: low latency & 
complexity, using only physical 
channel properties:

• randomness of wireless
channel

• Superiority of legitimate
over wiretap channels

Steps:

• Generate randomness using
intelligent reflecting surface
(IRS)

• Channel Probing between
legitimate users

• Generate cipher keys using
recipro CSIs
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Autonomous systems face numerous challenges in 
their operation, due to the uncertain and dynamic 
multi-layer attack surfaces

Aim & Cross-Layer Cooperation

TAS-RS2 aims to solve following challenges
• Modelling & addressing potential attacks in

discrete mission, control and communication
layers

• Study & address hybrid cascaded cross-layer
threats in the dynamic AS space

Autonomous Systems rely on the ability to conduct run time adaptations of control 
decisions over attacks or “perceived” attacks:
• Adversaries
• Environment uncertainties
• Degraded performance

UAV Networks
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Traditional Cryptography method:
• Complex key generation/distribution
• High computational complexity
• High latency
• No secrecy guaranteed by brute force

Physical Layer Security: using RECIPRO radio environment

IRS

Trajectory constraints

Channel parameters
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RS-2A: Exposure to cyber-physical attacks by
characterizing the attack surfaces, i.e., entry 
points and likelihoods across the mission surface 
in a technology & mission-invariant manner.

RS-2C: Provide secure communications across the 
different layers in the informatics plane from 
detection of signals to networking.

RS-2B: Provide quantifiable safety and feedback to 
the mission surface when the limits of secure 
controllability are compromised within a time 
horizon under current policies and adversarial
situations.

RS2-B: Control 
Plane

RS2-C: Comm. 
Plane

RS2-A: Mission 
Plane

Cyber-Attack on 
Comm. Systems

Obstacles

No-fly Zones

RS-2C

Cyber-Attack on 
Control Systems

RS-2B

Cyber-Attack on 
Mission Plane

RS-2A

RS-2C

Command and
Control Unit

Methods and Focus:

• Real-Time Non-Convex Trajectory
Optimisation for Path Planning under
Uncertainty, Power Consumption, Dynamic
Obstacle Avoidance and Communication
Security Constraints

• Adaptive and Fault-Tolerant Learning-based
Design for Mission Control to improve
reliability of safety critical systems

• Supervisory Control for Anomaly Detection
and Isolation Systems

• Intelligent Resource Allocation for Multi-UAV
Design under Security Threats

• Reliable Self-Assessment under Learning-
based Scenarios
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