EPSRC Trustworthy Autonomous Systems

The Security Node (TAS-S)

1st External Stakeholders Workshop
March 29th, 2021

https://tas-security.lancs.ac.uk/
https://security.tas.ac.uk
<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>0930</td>
<td>Workshop Introduction (Neeraj Suri, Lancaster University)</td>
</tr>
<tr>
<td>0945-1200</td>
<td>TAS-S Overview</td>
</tr>
<tr>
<td>0945-1015</td>
<td>Session 1: TAS-S Research Strands – Activity Plans</td>
</tr>
<tr>
<td>0945-1015</td>
<td>RS1: Securing the AS “Usage” Environment (Lead: N. Suri, Lancaster)</td>
</tr>
<tr>
<td>0945-1015</td>
<td>Theme A: Dynamic and Compositional AS Security (N. Suri, Lancaster)</td>
</tr>
<tr>
<td>0945-1015</td>
<td>Theme B: Explainable & Verifiable Decision Making (P. Angelov, Lancaster)</td>
</tr>
<tr>
<td>1015-1100</td>
<td>RS2: Securing the AS “Operations” Environment (Lead: W. Guo, Cranfield)</td>
</tr>
<tr>
<td>1015-1100</td>
<td>Theme A: Security in the Mission and Operational Surface (P. Angelov, Lancaster)</td>
</tr>
<tr>
<td>1015-1100</td>
<td>Theme B: Securing the Control Surface (G. Inalhan, Cranfield)</td>
</tr>
<tr>
<td>1015-1100</td>
<td>Theme C: Securing the Cross-Layer Networking Surface (W. Guo, Cranfield)</td>
</tr>
<tr>
<td>1115-1200</td>
<td>RS3: Securing the AS “Users” Environment (Lead: C. May-Chahal, Lancaster)</td>
</tr>
<tr>
<td>1115-1200</td>
<td>Theme A: Behavior Adaptation as a Basis of Security by Design (L. Dorn, Cranfield)</td>
</tr>
<tr>
<td>1115-1200</td>
<td>Theme B: Organizational Socio-Technical Mitigation (J. Deville, Lancaster)</td>
</tr>
<tr>
<td>1115-1200</td>
<td>Theme C: Ethics and governance of AS security (C. Easton, Lancaster)</td>
</tr>
<tr>
<td>1200-1245</td>
<td>SIESTA</td>
</tr>
<tr>
<td>1245-1400</td>
<td>Session 2: Stakeholder Presentations</td>
</tr>
<tr>
<td>1400-1445</td>
<td>Session 3: Workshop on Ethical, Legal and Social Issues (ELSI)</td>
</tr>
<tr>
<td>1445-Break</td>
<td>1445-Break</td>
</tr>
<tr>
<td>1500-1545</td>
<td>Session 4: PANEL “Priorities for AS Security – The Road Ahead”</td>
</tr>
<tr>
<td>1545-1630</td>
<td>Closing Session: Observations by Advisory Group and Action Items</td>
</tr>
</tbody>
</table>
The Team

Lancaster University

<table>
<thead>
<tr>
<th>Name</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. N. Suri (PI)</td>
<td>Systems Security</td>
</tr>
<tr>
<td>Prof. P. Angelov</td>
<td>ML/Intelligent Systems</td>
</tr>
<tr>
<td>Prof. D. Hutchison</td>
<td>Network Security</td>
</tr>
<tr>
<td>Dr. V. Giotsas</td>
<td>Network Security</td>
</tr>
<tr>
<td>Prof. C. May-Chahal</td>
<td>Social Sciences</td>
</tr>
<tr>
<td>Dr. J. Deville</td>
<td>Sociology</td>
</tr>
<tr>
<td>Dr. C. Easton</td>
<td>Law</td>
</tr>
<tr>
<td>Pam Forster</td>
<td>Project Manager</td>
</tr>
</tbody>
</table>

Cranfield University

<table>
<thead>
<tr>
<th>Name</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. W. Guo</td>
<td>Machine Intelligence</td>
</tr>
<tr>
<td>Prof. G. Inalhan</td>
<td>AI/Autonomous Systems</td>
</tr>
<tr>
<td>Prof. A. Tsourdos</td>
<td>Autonomous Systems</td>
</tr>
<tr>
<td>Dr. L Dorn</td>
<td>Behavior Sciences</td>
</tr>
</tbody>
</table>

The most important folks: Our RA’s & PhD students!!!
The Team

<table>
<thead>
<tr>
<th>Advisory Council: The Base Stakeholders</th>
<th>Academia, Industry, Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIRBUS</td>
<td>BAE SYSTEMS</td>
</tr>
<tr>
<td>AIT</td>
<td>CODE</td>
</tr>
</tbody>
</table>

New Stakeholders

<table>
<thead>
<tr>
<th>Advisory Group: Project</th>
<th>EPSRC</th>
<th>Hub Liaison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Carl Landwehren</td>
<td>Dr. Victoria Mico Egea</td>
<td>UKRI EPSRC AI/Robotics</td>
</tr>
<tr>
<td>Prof. Robin Bloomfield</td>
<td>Dr. Danielle Lloyd</td>
<td>UKRI EPSRC AI/Robotics</td>
</tr>
<tr>
<td>Dr. Hector Figueiredo</td>
<td>Prof. Gopal Ramchurn</td>
<td>U. Southampton/HUB PI</td>
</tr>
<tr>
<td>Dr. Carl Segueira</td>
<td>Prof. Luca Vigano</td>
<td>Kings College London</td>
</tr>
<tr>
<td></td>
<td>Prof. Derek McAuley</td>
<td>U. Nottingham</td>
</tr>
<tr>
<td></td>
<td>Prof. Jose Such</td>
<td>Kings College London</td>
</tr>
</tbody>
</table>
The EPSRC TAS Program: Strategic Priorities Fund

2020-2024
£33M Program
www.tas.ac.uk

Hub
Provides coordination
Leads on advocacy and engagement activities

- Trust
- Responsibility
- Legality
- Resilience
- Verifiability
- Functionality
- Security

www.security.tas.ac.uk EP/V026763/1
Workshop Objectives → Inform + Engage

1. **Our** TAS-S ideology and research objectives
2. **Your** opinions, experiences, needs/challenges
3. **Discussion** across AS “researchers and practitioners”
 - Feedback: Sanity checks, things missed?
 - What types of AS and security risks do you worry about?
 - What aspects of AS *[specification, V&V, perception, control, coordination, communication, use-of-AI, ...]* constitute your priorities?
 - Collaboration potential (*use-cases, data, testbeds, validation...*)
Trustworthy Autonomous Systems - Security Node (TAS-S)
An Overview

Neeraj Suri
Lancaster University
https://ssg.lancs.ac.uk/people/suri/
https://tas-security.lancs.ac.uk/
Autonomous Systems (AS): Functionality + Scope

Technology to effectively conduct a mission with varied levels of “absence of human intervention” e.g., L0-L5

- Sensors
- Perception
- Communication
- Control
- Coordination
- Navigation
- Decision
- Adaptation

CPS

OODA Loop
- Observe
- Orient
- Decide
- Act

Perception, Cognition, Decision

► Increasing complexity of applications & environments
► Complex connectivity, Complex data streams...
► Cognitively/Computationally complex OODA → AI
Trustworthy/Trusted/Trust-in... Autonomy

- Complexity: Things will break, perturbations will happen
 (At all levels of the CPS: AS assets, AS operations, AS environment)
 - Design, mis-configuration, mis-specification, operational: Dependability
 - Bad actors, deliberate disruptive intent: Security

- Technology is (mostly) useful if we can “justifiably” trust it to deliver the “requisite” services
 - Requisite/Correctness is highly subjective
 - Application/context based
 - Tradeoffs across mission, societal, regulatory or economic perspectives

➢ **Aim**: Ensure that the AS (acceptably) delivers the mission!
Complexity is reality Assets, Ops, Environment

Uncertainty is reality Assets, Ops, Environment

AI is reality
Increasingly complex technology dependence beyond human intervenability

NEED: Predictability over/ despite Uncertainty

ASs depend on technology to “base & improve” upon the essence of human experiences, acceptability & regulations to deliver the OODA functionality. This is a very hard problem.

AS Disruptions are reality
Increasingly complex, increasingly inter-connected, increasingly attackable

For ASs to provide for “safe+secure” [predictable] delivery with degraded or compromised systems [increased uncertainty] is an even harder problem.
Security ➔ Autonomous “System” is not compromised

- AS assets do not get compromised
- AS ops/mission does not get compromised
- AS user/usage environment does not get compromised
 (Societal spaces: users, regulatory, ethical, collateral damage ...)

The mission proscribes the level, acceptability and responses to the compromises!
Security: The Abstract View

1. Given a set of assumptions
2. Create a model of reality (assets, mission, env + threats)
3. Assert a requisite security property
 ✓ Deploy in the real world (and keep fingers crossed 😊)

Assumptions:
- That our assumptions are valid and complete
- That our models are valid and complete
- That the AS + environment + attackers behave as modeled!

Security: Compromise of the Assumptions or the Models

An attacker can use/abuse/ignore/subvert assumptions & models
Security: The Reality in an AS

- Accurate & complete model of system, mission, environment? ❌
- Accurate & complete sensory streams? ❌
- Accurate & complete perception/cognition/decision +AI? ❌
- Accurate & complete specification of the threats across the socio-technical attack surface? (UU) ❌
- Accurate & complete specification of post-attack information streams, resources, decision options? ❌
- Accurate & compete specification of user/usage aspects? ❌

AS: A world of Uncertainties!
AS Attack Surfaces & Dynamic Responsiveness

- Complex attacks – discrete, collusion, multi-layered
- Dynamic & complex - mission and societal – operational environments + corresponding diverse attack surfaces
- “Adaptive & run-time” OODA decisions with incomplete and uncertain data streams and resources
- Dependence on non-deterministic AI technologies

AS: Predictability despite Uncertainty
AS (after attacks): Predictability despite increased Uncertainty!
Security: Works best in structured environments

AS: Dynamic, adaptive + users... anything but structured

How do we provide well-structured AS security in complex socio-technical mission environments that are inherently unstructured?

- We know how to provide (partial & expensive) point solutions.

- What we critically lack is a scientific framework that can provide “composable, scalable & verifiable” mission adaptive socio-technical security! “Predictability despite Uncertainty”
Challenge: Unstructured, Uncontrolled, Dynamic Environment

- Can we secure the AS **Usage** basis?
 - Foundations: Specify, Compose, Explain, Verify

- Can we secure the AS **Operations**?
 - Ascertain & Mitigate Threats: Mission, Operations, Control, Comm

- Can we secure the AS **User** spaces?
 - Behavior adaptation, Ethics, Regulatory, Governance
TAS-S: Trustworthy Autonomous Systems: Security Node
ESG Workshop, March 29th, 2021

TAS-S Research Strands (RS)

RS1: Securing AS “Usage”
- Fundamentals of Adaptive AS Security
- Connected AS
- Dynamic AS
- Verifiable Autonomy
- Verifiable Security

RS2: Securing AS “Operations”
- Attack Surfaces and Countermeasures
- Mission & Operations Plane
- Control & Navigation Plane
- Information & Communications Plane

RS3: Securing AS “Users”
- Human & Societal Response
 - Social Response
 - Behavior Adaptation
 - Ethics & Governance
 - Preventative Design

Basic Research → Applied → Testbed Validation

Foundation Informs Design
Embed User Response in Design
Research Strand (RS1): Securing the AS “Usage”

Theme A: Dynamic and Compositional AS Security
(N. Suri, A. Tsourdos, G. Inalhan)

Theme B: Explainable & Verifiable Decision Making
(P. Angelov, N. Suri, W. Guo, G. Inalhan)
RS1 Scope

<table>
<thead>
<tr>
<th>RS1 Objectives</th>
<th>State-of-the-Art and Gaps</th>
<th>Innovation Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compositional & Verifiable “System of Systems” Security</td>
<td>Security approaches well-developed in structured space, but AS operate in dynamic unstructured environments</td>
<td>Develop dynamic & adaptive AS security measures (specification, composition, verification) responding to multi-modal and uncertain threats</td>
</tr>
</tbody>
</table>
The needs: Scalable, Composable, Verifiable Security (Structured)
The problem: Variety, Volume, Velocity... (Unstructured)
RS1 Theme A: Specification and Models

The issues: Specification of “Uncertainty”

- How do we specify the AS systems environment?
- How do we specify the AS security specs?
- How do we compose security? (Complex collaborative – SoS)
- How do we form, adapt and solve AS models... on the fly?
- How do we specify verifiable (offline/online) AS behavior?
 - AI is wonderful, but deterministic reproducibility is not its strength
RS1A Target 1: Establishing Security Specifications

Security: Given a system’s “specifications” of assumptions, models and threats, assert a measurable security property

Approach: Bounding uncertainties to ensure predictability
- Ascertain security attributes per operational plane of the AS
- Ascertain dependencies on security attributes/threat models
- Ascertain minimum environment characteristics and the tolerances needed to “sustain” a security attribute

Challenge: The AS environment, ops and threats - all are dynamic!
The pieces need to fit

- Functionality needs to compose (invariance & growth): $2 + 2 \geq 4$
- Threat models need to compose: No leaks or new threats
- Security properties (+ metrics) need to compose: C.I.A +++

Compositions result in “emergent” behaviors

- “Emergence” in not a popular word in security
Compositions: Linking Interface Model (LIF)

- Specifying AS “components”
- Specification of functional properties: values, timing, resource constraints...
- Specification of non-functional properties: FT, security...
- Specification of security metrics
- Composition rules
- Is a component/interface stateful or stateless?
RS1A Recap

Target: Fundamentals of adaptive AS security specifications to achieve “Predictability despite Uncertainties”

Progressive Outcomes

- Specification framework characterising the relationships across the dynamic and unstructured AS environment & security attributes
- Compositional framework for collaborative, disruptive and scalable security
- Run-time security policy framework for AS

Open areas (also as a basis for collaboration)

- What AS models + security attributes really matter in reality?
- What problems does the community encounter over collaborative AS?
- Repository of synthetic AS deployment scenarios?
RS1: Fundamentals of Autonomous Systems Security

Theme B: Verifiable Autonomy and Security
Plamen Angelov (Lancaster Univ)
Neeraj Suri (Lancaster Univ)
Weisi Guo (Cranfield Univ)
Gokhan Inalhan (Cranfield Univ)
RS1: Fundamentals of AS Security

Autonomy has to be verifiable (deterministic?)

- Assured Autonomy
- Known unknowns
 - Identify vulnerabilities
 - Verifiable countermeasures
 - Formal methods may be applicable
- Unknown unknowns, unexpected
 - Detect, recognize, learn from unexpected
 - Bounded performance, egress routes, mission abort
 - Explainable by design deep learning, exploratory classifiers (xClass)
- Proliferation of AI and ML (often non-deterministic) raises questions related to (deterministic) verification
RS1: Fundamentals of AS Security

M. Fisher et al., Verifying Autonomous Systems, Communications of the ACM, 56(9): 84-93, Sept 2013
Autonomous Systems need to be secure:
- Against external threats (environment, adversaries)
- Against internal threats (system itself, e.g., algorithm, communication, insider threats)

- Interpretable deep learning with verifiable proofs
Characteristics:

- Context related – mission plane
- System related – control, navigation, machine health
- Network facing – information, data/sensors
- Human related (even though autonomous – part of a system of systems)
RS1: Fundamentals of AS Security

Challenges and open questions:

- Open/dynamic operational environments (how to factor/specify/model subject to “unknown unknowns”)?

- Difficult to elicit formal requirements for complex missions (completeness? dynamic specifications?)

- How about amorphous models such as neural networks, deep learning and, more generally, learning and adaptation algorithms?
RS1: Fundamentals of AS Security

Challenges and open questions:

- Heterogeneity of AS
- Design time vs run time verification?
- How about runtime performance under uncertainties?
- Full guarantees of safety or graceful degradation and egress?
AS are increasingly using and relying on AI and various forms of machine learning including deep learning (DL).

This creates opportunities for performance but opens the door for security treats and vulnerabilities.

For example:

- Uncontrolled high dimensional (HD) noise or adversarial data attacks are difficult to expose at HD levels of DNN.

- The research is divided into developing both real-time data-driven defences, and statistically grounded certificate defences.
Examples:

Adversarial Training, robust stochastic gradient descent (SGD) tackles corrupted data or gradients during the training phase by checking for adversarial examples.

However, this does not effectively deal with real time backdoor access to training data that may add wrong data or labels

• This empirical approach does not offer guarantees, certificates
• Certificate Filters: offer proofs to what attacks can be countered using statistical guarantees integrated into the DNN.
• Traditionally, in low dimensional data, we can identify corruption/noise through covariance checks.
Review of DNN Security & Defence

- This becomes more challenging at HD, especially with mixed data types and mixed adversarial statistics.

- Other certified defences that might not operate in real time include:
 1) randomised smoothing with soft classifiers, and
 2) manifold based defences to identify data topology anomalies
RS-2: “Usage Environment”

Prof. Weisi Guo (RS2 lead, Network lead)
Prof. Plamen Angelov (Mission lead)
Prof. Gokhan Inalhan (Control lead)
Prof. Antonios Tsourdos
Dr. Vasileios Giotsas
Prof. David Hutchison
Operation Space

RS1: Securing AS “Usage”
- Fundamentals of Adaptive AS Security
- Connected AS
- Dynamic AS
- Verifiable Autonomy
- Verifiable Security

RS2: Securing AS “Operations”
- Attack Surfaces and Countermeasures
- Mission & Operations Plane
- Control & Navigation Plane
- Information & Communications Plane

RS3: Securing AS “Users”
- Human & Societal Response
- Social Response
- Behavior Adaptation
- Ethics & Governance
- Preventative Design

Foundation Informs Design
Embed User Response in Design

Basic Research → Applied → Testbed Validation
Real Autonomous System Test Capability (Theory to Practice)

Global Research Airport & Airspace (only 1 in world) with Queen’s Award UK flying laboratory

- Saab Flight Lab
- JAV Flight Space
- Digital Control Tower
- UK National £67m DARTeC
- JAV Radar
- Boeing 737 Test Aircraft
- Top 20 HPC in UK
- Holographic Radar
- Autonomous Vehicle Test

UK National Unmanned BVLOS Drone Corridor

Intelligent Air-Ground Joint Autonomy Testing
Real Autonomous System Attack Statistics
Real Autonomous System Attack Vectors & Ecosystem

<table>
<thead>
<tr>
<th>Trend</th>
<th>Key UAS Feature</th>
<th>STRIDE Taxonomy Threat</th>
<th>Vulnerabilities and Attack Vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simplified Control and Operation</td>
<td>Camera view-based flight; following target on camera</td>
<td>Repudiation and Information Disclosure</td>
<td>Third-party monitoring of user activities</td>
</tr>
<tr>
<td></td>
<td>Gesture and speech-directed flight control</td>
<td>Elevation of Privilege and Tampering</td>
<td>Alteration of factory-installed configurations</td>
</tr>
<tr>
<td>Self-Operation and Vigilance</td>
<td>Location or sensor-based payload manipulation (e.g., crop spraying, medical supply delivery)</td>
<td>Elevation of Privilege</td>
<td>Intercept of payload usage or delivery</td>
</tr>
<tr>
<td></td>
<td>Swarm drone maneuvers; multi-UAS operations</td>
<td>Elevation of Privilege and Tampering</td>
<td>Scaled propagation of operational errors</td>
</tr>
<tr>
<td></td>
<td>Preplanned hovering; patrol routines</td>
<td>Spoofing or Tampering</td>
<td>Override of authentic GPS signal or uploaded navigation files</td>
</tr>
<tr>
<td>Self-Maintenance and Protection</td>
<td>High-speed obstacle avoidance</td>
<td>Spoofing and Denial of Service</td>
<td>Sensor saturation or interference for obstruction of “view”</td>
</tr>
<tr>
<td></td>
<td>Auto-docking; recharge; return to home</td>
<td>Repudiation and Information Disclosure</td>
<td>Third-party monitoring of user activities and sensor interference for failure to register “home” state</td>
</tr>
</tbody>
</table>

![Diagram of UAS system](image_url)
State of the Art and Innovation

<table>
<thead>
<tr>
<th>RS Objectives</th>
<th>State-of-the-Art and Gaps</th>
<th>FASMAS Innovation</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS2: Multi-layer attack surface mitigation.</td>
<td>Mostly discrete layer analysis. Integrated mitigation of cascaded cross-layer threats in a dynamic AS space is in its infancy.</td>
<td>Hybrid cross-layer mitigation across mission, control, and information layers for AS operations.</td>
</tr>
</tbody>
</table>
State of the Art and Innovation

A. Exposure to cyber-physical attacks by characterizing the attack surfaces, i.e., entry points and likelihoods across the mission surface in a technology & mission-invariant manner.

B. Provide quantifiable safety and feedback to the mission surface when the limits of secure controllability are compromised within a time horizon under current policies and adversarial situations.

C. Provide secure communications across the different layers in the informatics plane from detection of signals to networking.
RS2: Attack Surfaces and Countermeasures
Securing the AS Operations Environment

Theme A:
Mission and Operations Surface

Prof. Plamen Angelov (Lancaster Univ)
Prof. Antonios Tsourdos (Cranfield Univ)
RS2 Theme A: Mission and Operations Surface

Linkages across Research Strands

- RS1: Fundamentals of Adaptive AS Security
 - Connected AS
 - Dynamic AS
 - Verifiable Autonomy
 - Verifiable Security

- RS2: Attack Surfaces & Countermeasures
 - Mission & Operations Plane
 - Control & Navigation Plane
 - Information & Communications Plane

- RS3: Human & Societal Response
 - Social Response
 - Behaviour Adaptation
 - Preventative Design

Foundation Informs Design Embed Human Response in Design
RS2 Theme A: Mission and Operations Surface

Attack Surfaces and Countermeasures

Mission Surface:
- High level strategic goals, plans, memory/data sets, knowledge, taxonomy and ontologies as well as world models get attacked and compromised
- **Focus**: Mission vulnerabilities, threats & attacks

Operations Surface:
- Tactical - dynamic ops & environment aspects → concerns decision algorithms & mechanisms
- **Focus**: Operational vulnerabilities, threats & attacks
RS2 Theme A: Mission and Operations Surface - Aims

Ascertain exposure to **cyber-physical attacks** by characterizing the **attack surfaces**, i.e., **entry points** and **likelihoods** across the mission surface in a technology & mission-invariant manner

- Identification of attack surfaces and development of mitigation strategies
- Develop algorithms to detect and mitigate threats across the relevant surfaces of AS
- Monitor and guard the mission
- Functional decomposition of AS operation planes
- Complexities related to swarms and network-centric scenarios
RS2 Theme A: The Mission Plane

Dynamics and uncertainty related to the Mission Plane

- Characterizes the essence of an AS to autonomously execute a mission, including element of coordination (across the AS entities and/or with the environment)

- The decision planning operations that accomplish the mission and the sensory data streams supporting navigation, orientation, pattern recognition, including vision, ISTAR, situation awareness, self-organisation, egress conditions for safe/secure fallback
Dynamics and uncertainty related to the Mission Plane

- Likely security vulnerabilities include:
 • multi-source sensory data and computations;
 • distribution of the system elements, on-the-ground versus on-board AS task performance

- Furthermore, **inherent uncertainty** in the decision plane contributes to additional security vulnerabilities and may jeopardize mission success
RS2 Theme A: The Operations Plane

Dynamics and uncertainty related to the Operations Plane

- Covers the realizations of the AS protocol, decision and coordination functionality where most AS security compromises (on access control, confidentiality, integrity, availability) transpire

- The new AS challenges are mobility, heterogeneity and **dynamic aggregation** across AS entities

- The approach of identifying the attacks surfaces for AS coordination protocols and execution middleware will be based on the exposition of the knowledge base on distributed systems security approaches and federated learning
RS2 Theme A: AI, Deep Learning and Security

AS are increasingly using and relying on AI and various forms of machine learning including deep learning.

This creates opportunities for performance, but opens the door for security treats and vulnerabilities; for example:

in addition to the methods mentioned in RS1B, also explainable by design deep learning.
RS2 Theme A: AI, Deep Learning and Security

• Explainable-by-design forms of Deep Learning offer
 • not only more human-understandable internal working of complex and efficient algorithms of high performance,
 • but also added level of security because the move away from the “black box” nature the mainstream deep learning offers
 • It can be used for classification algorithms, for decision making as well as for exploration of a new environment
 • Security threats and countermeasures will be studied and analysed both in design and run time
RS-2 B: “Securing the Control Surface”

Prof. Gokhan Inalhan (Control lead)
Prof. Plamen Angelov
Prof. Antonios Tsourdos
Autonomous Systems rely on the ability to conduct **run time adaptations of control decisions** over attacks or “perceived” attacks:

- **Adversaries**
 - Physical
 - Information-plane
- **Information and dynamic environment uncertainties**
- **Degraded performance**
 - CNS and Infrastructure
 - Actuators

How to do this in a “**trustworthy**” fashion?

- Safe
- Secure
- Reliable
- Sensing and COMM errors
- Loss of an actuator
- Environmental conditions
 - Wind
- Electronic Attacks
 - Jamming
 - Spoofing
- Electromagnetic deception
 - false/duplicate target generation

- Generative Adversarial Networks
 - DNN perception and classification
- Injecting false patterns into data
• Provide **quantifiable safety and feedback** to the mission surface when the limits of secure controllability are compromised within a time horizon under current policies and adversarial situations.

• Key Solution Cornerstones in Learning-Enabled Context
 - **Interpretability** ➔ Explainable and Trustworthy AI
 - **Continual Assurance** ➔ Dynamic Verification & Validation
 - **Adaptive Security Strategies**
Leading to **Explainable AI**

- **Physics Informed Deep Learning**
 - Ability to identify system behavior
 - Generalization capability beyond training data input and output sets
 - Ability to detect/classify information and anomalies
 - Degraded performance

- Dynamic Reachability Sets
 - Detect and Avoid
 - Learning Enabled Context

Deep Reinforcement Learning Based Adaptive Controls

- Learn adaptation strategy through observation between reference model and the reality

Actor-Critic Structure Trained by utilizing DDPG Algorithm

Stabilised model is required if the open-loop dynamics is unstable

Time-varying $k(t)$ provides scaling policy of the observer gain parameter v_{opt}
Step Response Comparison of MRAC, CRM and RL-CRM Adaptive Systems

Absolute Value of $e^c(t)$

Absolute Value of $u(t)$

<table>
<thead>
<tr>
<th>Performance Metrics</th>
<th>MRAC</th>
<th>CRM</th>
<th>Improvement (%)</th>
<th>RL-CRM</th>
<th>Improvement (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$|K_c|$</td>
<td>15.2114</td>
<td>3.7341</td>
<td>75.4520</td>
<td>2.4489</td>
<td>83.9008</td>
</tr>
<tr>
<td>$|\bar{K}_x|$</td>
<td>18.4647</td>
<td>7.8298</td>
<td>57.5958</td>
<td>5.5146</td>
<td>70.1344</td>
</tr>
<tr>
<td>$|\bar{\theta}|$</td>
<td>0.0888</td>
<td>0.0338</td>
<td>61.9369</td>
<td>0.0207</td>
<td>76.6892</td>
</tr>
<tr>
<td>$|y_m|_{\infty}$</td>
<td>0.2</td>
<td>0.2064</td>
<td>-3.2</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>$|e^c|$</td>
<td>0.4616</td>
<td>0.1957</td>
<td>57.6039</td>
<td>0.1379</td>
<td>70.1256</td>
</tr>
<tr>
<td>$|e^r|$</td>
<td>0.4616</td>
<td>0.3928</td>
<td>14.9047</td>
<td>0.3886</td>
<td>15.8145</td>
</tr>
<tr>
<td>$|u|$</td>
<td>6.5704</td>
<td>2.0811</td>
<td>68.3262</td>
<td>1.4163</td>
<td>78.4290</td>
</tr>
</tbody>
</table>
• **Interpretability** ➔ Explainable and Trustworthy AI
• **Continual Assurance** ➔ Dynamic Verification & Validation
• **Adaptive Security Strategies**

How can we engage with you?
- Specific problems
- Use cases/applications
- Data

What is your expectation from us?
Mechanisms to engage with you?
RS-2 C: “Securing the Cross-Layer Networking Surface”

Prof. Weisi Guo (lead) [Physical Signal Security]
Dr. Vasileios Giotsas [Network Security]
Prof. David Hutchison [Network Security]
RS-2C

Operation Space

RS1: Securing AS “Usage”
- Fundamentals of Adaptive AS Security
- Connected AS
- Dynamic AS
- Verifiable Autonomy
- Verifiable Security

RS2: Securing AS “Operations”
- Attack Surfaces and Countermeasures
- Mission & Operations Plane
- Control & Navigation Plane
- Information & Communications Plane

RS3: Securing AS “Users”
- Human & Societal Response
- Social Response
- Behavior Adaptation
- Ethics & Governance
- Preventative Design

Foundation Informs Design
Embed User Response in Design

Basic Research → Applied → Testbed Validation
Attack Vectors from Physical Signals to Network Packets to Federated Intelligence

Attack Vectors:

- Adversarial data (sensors, comms)
- Key intercept
- Interference / Jam
- User privilege
- Insider bad behaviour
- D-DoS
- Erode secrecy rate
- Introduce error accumulation
Physical Security Review

- **Purpose**: avoid eavesdropper / intercepts through signal shaping
- **Attack Vectors**: Passive eavesdropping, cooperative active eavesdropping
- **Attack type** depends on position information of legitimate AS node
- **Many physical security techniques** out there on beamforming and transmission augmentation

Cooperative beamforming Location Assisted Avoidance Distortion Modulation
Physical Layer Security: Keys from Mutual Radio Environment

- **Purpose:** achieve 0 key exchange security at physical signal layer
- **Innovation:** exploit unique, dynamic, correlated signal features between entities due to the nature of radio signal propagation

Cryptography

- Complex key generation & management & distribution
- No secrecy guaranteed by brute force
- High computational complexity & latency

Physical Layer Security (PLS)

Low latency & complexity, key-less, using physical channel properties:
- **Randomness** of wireless channel
- **Superiority** of legitimate over wiretap channels
Physical Layer Security: Challenges for Dynamic ASs

Autonomous System improved PLS

(i) Hovering increased randomness
(ii) Mobility enhanced legitimate channel
(iii) Mobility degraded wiretap channels

Mobility induced Challenges

- Estimate swift time-varying CSIs
- Analyze mobile & silent eavesdroppers
- Optimize secrecy rate with time-varying CSI
- Realistic & complex channel modelling
Physical Layer Security: CSI Estimation Drives Secure Capacity

- Full CSI Scenarios:
 - Trajectory/Power/Beamforming optimization [1]
 - Precise CoMP anti-jamming & beamforming [2]

- Partial CSI Scenarios:
 - Robust (worst case) optimization [3]

- Unknown CSI Scenarios:
 - Friendly Jammer in intercept probability security region [4]

RS-2C – Physical Information Security

Physical Layer Security: Plan Going Forwards

Phase 1
- Fast CSI estimation algorithms for PLS on autonomous vehicles
 - CSI estimation for legitimate channels
 - Eavesdropper space analysis

Phase 2
- Expand to realistic scenario autonomous systems
- Demonstrate impact with stakeholders
- Sequential optimization with time-varying CSI

Phase 3
- Hardware programming & test & realisations
Network Layer Security: Issues with Centralized IP-based Communications to Bypass

- The reliance on the Internet Protocol (IP) opens an array of security risks and vulnerabilities in legacy communication protocols
 - Routing misdirection attacks
 - DNS poisoning
 - IP spoofing
 - Compromised certification authorities

- Routing and topological inefficiencies caused by the centralization and consolidation of IP resources
 - Dependence on cloud providers for data persistence and processing
 - Dependence on CDNs for efficient data delivery
 - Centrally-provided logic on configuration of firewalls, IDS, middleboxes
RS-2C – Network Layer Security

Network Layer Security: Distributed Publish/Subscribe
Information Centric Communications

- Information-centric communication model to enable self-organized and
dynamic topologies without depending on IP-related resource allocation
 - Structured peer-to-peer network based on a Distributed Hash Table (DHT)
 - Self-organize to exchange disseminate locally observed threats to
 construct a dynamically updated threat intelligence distributed
 database

- AS nodes communicate in a publish/subscribe fashion
 - The publish/subscribe protocol combines gossip and epidemic
 spreading to prevent excessive traffic while also ensure the timely
 dissemination of messages.
Federated Intelligence Security: Distributed Defence

- **Purpose:** Recognise comms and compute are distributed across a networked AS ecosystem. Secure communications in highly complex networked optimisation settings (connect to RS-1B).
- **Crucial:** For real-time solutions with multiple KPIs to satisfy. Avoid heuristic optimisation using deep learning.
- **Intelligence:** Often federated in networked systems (adversarial attacks and defence can occur across communication channels).
- **Innovation:** Develop explainable insight using deep GP, algebraic topology, hypergeometric symbolic, random sketch representations.

Interpretable deep learning with verifiable proofs, adversarial feature detection....etc.

“Scalable Partial Explainability in Neural Networks via Flexible Activation Functions,” S. Sun, C. Li, Z. Wei, A. Tsourdos, W. Guo, AAAI Conference on Artificial Intelligence, Feb 2021

“Random Sketch Learning for Deep Neural Networks in Edge Computing,” B. Li, P. Chen, H. Liu, W. Guo et al., Nature Computational Science, to appear Feb 2021
RS-2: AS Test Capabilities at Cranfield

Real Autonomous System Test Capability (Theory to Practice)

Global Research Airport & Airspace (only 1 in world) with Queen’s Award UK flying laboratory

- Saab Flight Lab
- UAV Flight Space
- Digital Control Tower
- UK National £67m DARTeC
- Boeing 737 Test Aircraft
- Saab Flight Lab
- UAV Flight Space
- Digital Control Tower
- UK National £67m DARTeC
- Boeing 737 Test Aircraft

Intelligent Air-Ground Joint Autonomy Testing

UK National Unmanned BVLOS Drone Corridor
RS-2 Summary

Summary

A. Exposure to cyber-physical attacks by characterizing the attack surfaces, i.e., entry points and likelihoods across the mission surface in a technology & mission-invariant manner.

B. Provide quantifiable safety and feedback to the mission surface when the limits of secure controllability are compromised within a time horizon under current policies and adversarial situations.

C. Provide secure communications across the different layers in the informatics plane from detection of signals to networking.
Research Strand 3

Securing the Autonomous System
“User” Environment
TAS-S Research Strands (RS)

RS1: Securing AS “Usage”
- Fundamentals of Adaptive AS Security
- Connected AS
- Dynamic AS
- Verifiable Autonomy
- Verifiable Security

RS2: Securing AS “Operations”
- Mission & Operations Plane
- Control & Navigation Plane
- Information & Communications Plane
- Attack Surfaces and Countermeasures

RS3: Securing AS “Users”
- Human & Societal Response
- Behavior Adaptation
- Organisational Adaptation
- Ethics, Law & Governance
- Preventative Design

Foundation Informs Design
Embed User Response in Design

Basic Research → Applied → Testbed Validation
TAS-S RS3 Team

Joe Deville

Corinne May-Chahal

Lisa Dorn

Catherine Easton

Luke Moffat
Securing the AS “User” environment
AS Scenarios: Discrete, Hybrid, Tethered, Clustered...

Attack Surfaces: Technology + Usage + User Environment
Phase 1: What are the human, ethical, legal, social and environmental factors influencing autonomous systems security that have already been researched?

RQ1: What are the human behaviours influencing autonomous systems security?
RQ2: What are the ethical and legal factors influencing autonomous systems security?
RQ3: What are the social factors influencing autonomous systems security?
RQ4: What are the environmental factors influencing autonomous systems security?
There are many examples of tools and methods that can be adapted to help identify the human, organisational, ethical and social aspects of secure autonomous systems: e.g. TechTransformed resources for Consequence Scanning.

Which tools are best adapted to autonomous systems socio-technical security?
TAS-S Research Strands (RS) -

RS1: Securing AS “Usage”
- Fundamentals of Adaptive AS Security
- Connected AS
- Dynamic AS
- Verifiable Autonomy
- Verifiable Security

RS2: Securing AS “Operations”
- Attack Surfaces and Countermeasures
- Mission & Operations Plane
- Control & Navigation Plane
- Information & Communications Plane

RS3: Securing AS “Users”
- Human & Societal Response
- Behavior Adaptation
- Organisational Adaptation
- Ethics, Law & Governance
- Preventative Design

Foundation Informs Design
Embed User Response in Design

Basic Research → Applied → Testbed Validation
Behavioural adaptation as a basis of security by design

Lisa Dorn
Cranfield University
Previous studies to evaluate behavioural adaptation (BA) have been short-term and it is unclear how repeated longitudinal exposure to AS may impact individual response to security threats and threats to the security of others, including the AS itself.
Introduction

- AS design may assume homogenous and static end user behaviour
- Behaviour may change (or adapt) in response to function and performance of an AS - beginning with AVs
- Adaptations may diminish safety and security
- Previous studies are narrow and lab-based
Behavioural Adaptation and AS

<table>
<thead>
<tr>
<th>Human Factors</th>
<th>Possible BA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Situational Awareness</td>
<td>Recognising that the system is under attack</td>
</tr>
<tr>
<td>Monitoring</td>
<td>Ignore alerts; startle response</td>
</tr>
<tr>
<td>Workload</td>
<td>Greater secondary task engagement</td>
</tr>
<tr>
<td>Trust</td>
<td>As trust increases, attention to critical information decreases</td>
</tr>
<tr>
<td>Impairment</td>
<td>Operating the AS whilst impaired (alcohol, drugs, fatigue etc)</td>
</tr>
</tbody>
</table>
Qualitative Model of Behavioural Adaptation

- Personality: Locus of control, Sensation-seeking
- Mental Model
- Driving task: Strategic, Tactical, Operational
- System: Vehicle, Road, Environment
- Feedback: Experience (direct), Information (inferred)
- Control loop

ADAPTIVE DESIGN

Research Questions

Stage 1: REA - AS’s socio-technical security research, adaptive behaviours and regulatory context

- Mental models and how they guide human interaction with AS
- What specific behaviours change as humans adapt to AS and how might this change compromise security?
- Previous experience with technology and BA to AS
- Measurement of BA
TAS-S Research Strands (RS) -

RS1: Securing AS “Usage”
- Fundamentals of Adaptive AS Security
- Connected AS
- Dynamic AS
- Verifiable Autonomy
- Verifiable Security

RS2: Securing AS “Operations”
- Attack Surfaces and Countermeasures
- Mission & Operations Plane
- Control & Navigation Plane
- Information & Communications Plane

RS3: Securing AS “Users”
- Human & Societal Response
- Behavior Adaptation
- Organisational Adaptation
- Ethics, Law & Governance
- Preventative Design

Foundation Informs Design → Embed User Response in Design

Basic Research → Applied → Testbed Validation
Cultures and practices within organizational settings can also dramatically change the design and success of secure AS. Secure AS require new methodologies that organisations can use to critically interrogate socio-technical processes and their engagement with wider publics.
TAS-S Research Strands (RS) -

RS1: Securing AS
“Usage”
- Fundamentals of Adaptive AS Security
- Connected AS
- Dynamic AS
- Verifiable Autonomy
- Verifiable Security

RS2: Securing AS
“Operations”
- Attack Surfaces and Countermeasures
- Mission & Operations Plane
- Control & Navigation Plane
- Information & Communications Plane

RS3: Securing AS
“Users”
- Human & Societal Response
- Behavior Adaptation
- Organisational Adaptation
- Ethics, Law & Governance
- Preventative Design

Foundation Informs Design
Embed User Response in Design

Basic Research → Applied → Testbed Validation
Ethical, Legal and Social Issues (ELSI) surrounding AS security interact with a wide range of overlapping aspects of AS development. These are constantly changing as AS evolve. How can designers and developers best adapt?
New methods for the design of more ethical, more secure Autonomous Systems

Joe Deville, Catherine Easton, Luke Moffat
Lancaster University
Knowing ethics, law & security in relation to AS’s

Developing a new method for addressing core project RQs:

- What are the ethical and legal factors influencing autonomous systems security? (RQ2)
- What are the social factors influencing autonomous systems security? (RQ3)
- What are the environmental factors influencing autonomous systems security? (RQ4)

Assumes questions of ethics and security are not reliably knowable in advance of interactions between technologies and society (=> uncertainties/unknown unknowns)

- We need to understand how AS security, law and ethics are understood by diverse stakeholders – wider contemporary views on ethics & security
- We need to understand how diverse stakeholders imagine their likely and desirable futures with AS’s – wider future-focused views of ethics & security
- We need to provide actionable guidance to organisations looking to develop more secure/ethical AS’s & to deal with the complexity of the social...
A wider view on ethics & security
A wider view on ethics & security

Systems
Actors
Accountabilities

Basic

Applied

Engagement
Participation
Exploring ethics & security through co-design
A wider view on law & regulation

- On-going, iterative conversation: this is not simply a story of compliance
- Engagement with hard law (legislation eg GDPR) and soft, regulatory measures (eg certification)
- Opportunity to feedback on the substantive practices that embed legal issues into collaborative technology development
- ELSI methods will draw out the interaction and interplay between law and ethics
- On a wider level industry standards and co-regulatory security measures will be analysed, through engagement with stakeholders
Scoping present & future interactions with technologies

Backcasting

- Real time decision-making
- Forecasting
- Scenario planning

TIME

PRESENT

FUTURE

A shift to describing desirable futures & how to achieve them rather than only likely futures
Combining backcasting, controversy analysis & ELSI

Participatory backcasting: emphasis on using engagement with diverse affected parties/stakeholders as a resource to broaden perspective on issues characterised by uncertainty.

Controversy analysis: interested in understanding which groups (‘publics’) are shaping debates around new technologies, and analysing the assumptions brought to engaging with a new technology by these groups.

ELSI: interested in understanding the interplay between ethics and law and its wider impacts on society. Looks both internally at the project and externally through stakeholder engagement.

In all three approaches, seen as vital to use *both expert and lay forms of knowledge* as resources for understanding the unknowns and ethical issues surrounding a new social/technological developments.
Combining ELSI & Controversy Analysis within a participatory backcasting framework to identify key stakeholders/publics, contemporary ethical & security issues, and future-focused visions for secure, ethical AS’s

Elaborating visions, assessing feasibility

Working with partners to identify practical interventions
Using this process to work in depth with 2 case study partner organisations before developing a set of resources – including a best practices, a handbook, multimedia resources – for use by organisations looking to develop secure, ethical, autonomous systems.
Using co-design for knowledge exchange

• Supports and drives industry R&D capacity for socio-technological innovation, in response to ELSI, via knowledge exchange, creative and participatory methods.

• Co-designs spaces and tools with which designers, engineers, practitioners, communities and policymakers, collectively consider and anticipate better futures.

• By co-designing capacity, we mean, opening spaces, building frameworks, and creating tools to make technological development responsible.

• ‘Ethics through Design’ as a framework for co-designing security.
is IT ethical? Values

- Autonomy
- Beneficence
- Co-operation
- Consent
- Data protection
- Dignity
- Diversity
- Equality
Today’s workshop

What is the objective?
Discover our encounters with ethics

What is the value?
Getting to know each other, finding common ground and differences

What are the requirements?
45 mins
Group work in breakout rooms
Next steps

Scoping legal & regulatory issues with key stakeholders

- Work to begin immediately following this introductory workshop
- What are the legal and regulatory issues that are challenging for you in relation to ethics & security?
- How can the project contribute to debates on changes to legal structures (esp. post Brexit)
- 1:1 scoping interviews – your contributions v. much needed & appreciated

To inform the design of a future stakeholder workshop

- Focusing on ethical and social issues associated with autonomous systems security intersect (or not) with legal issues
Getting Involved

Review Briefings
Backcasting and controversy analysis
Tool development