
Real Arithmetic in TLAPM ⋆

Ovini V.W. Gunasekera , Andrew Sogokon ,
Antonios Gouglidis , and Neeraj Suri

School of Computing and Communications, Lancaster University
{o.gunasekera|a.sogokon|a.gouglidis|neeraj.suri}@lancaster.ac.uk

Abstract. TLA+ is a formal specification language for modelling sys-
tems and programs. While TLA+ allows writing specifications involving
real numbers, its existing tool support does not currently extend to au-
tomating real arithmetic proofs. This functionality is crucial for proving
properties of hybrid systems, which may exhibit both continuous and dis-
crete behaviours. In this paper, we address this limitation by enabling
support for deciding first-order real arithmetic formulas (involving only
polynomials). Specifically, we update the typed and untyped encodings
in the TLA+ Proof System (TLAPS) to support reals and basic real arith-
metic operations and implement them in the TLA+ proof manager. The
latter generates assertions in SMT-LIB and directs them to a selected
backend (currently the Z3 SMT solver, which supports the theory of non-
linear real arithmetic). We present this new functionality with a safety
verification example featuring a hybrid system.

Keywords: formal verification · real arithmetic · hybrid systems · TLA+ .

1 Introduction

TLA+ is a general-purpose formal language based on the Zermelo-Fränkel set
theory for specifying digital systems and is supported by industrial strength
tools. Over the years, TLA+ gained considerable attention from both the aca-
demic community and industry [4], where it was used by major companies such
as Amazon, Intel and Microsoft in applications ranging from concurrent to dis-
tributed systems. Indeed, TLA+ is so expressive that it can even be applied
to model hybrid systems [2] (and therefore cyber-physical systems in which the
state may evolve in discrete time steps or continuously). Modelling and reasoning
about continuous state evolution in these systems fundamentally requires real
numbers. TLA+ allows one to work with variables ranging over the set of real
numbers (see [3, §18.4]) and was designed anticipating the use of decision pro-
cedures that could work with the structures defined in its standard arithmetic
modules [3, Ch. 18]1. Work by Merz et al. [5] created the necessary infrastruc-

⋆ Research supported by the UKRI Trustworthy Autonomous Systems (TAS) Node in
Security. EPSRC Grant EP/V026763/1.

1 “If you want to prove something about a specification, you can reason about numbers
however you want. Tools like model checkers and theorem provers that care about
these operators will have their own ways of handling them.” – L. Lamport [3, §18.4]

https://orcid.org/0000-0003-3974-5272
https://orcid.org/0000-0002-5849-7991
https://orcid.org/0000-0002-4702-3942
https://orcid.org/0000-0003-1688-1167

2 O.V.W. Gunasekera et al.

ture to handle arithmetic problems involving integers and created an interface to
SMT solvers. However, support for real arithmetic has, up to now, been notably
absent, which represents a fundamental limitation that must be addressed before
hybrid system verification in TLA+ can become a practical endeavour.

Contributions. We extend TLAPM (the TLA+ Proof Manager) to support real
arithmetic, enabling automatic proofs using the Z3 SMT solver. In this work, we
are concerned solely with decidable real arithmetic conjectures that are sentences
in the first-order theory of real closed fields.

Related Work. Our work is very close in spirit to that of Denman and Muñoz [1],
who enabled automatic handling of real arithmetic conjectures in PVS using an
external oracle (MetiTarski). Our work builds on an earlier effort by Merz et
al. [7], who developed the TLA+ Proof System (TLAPS), i.e., a proof manager
for TLA+ (TLAPM) and the infrastructure necessary for interfacing with SMT
solvers (and indeed commented that support for real numbers should be facili-
tated, which we carry through in this work).

2 Enabling Real Arithmetic in the TLA+ Proof Manager

The TLA+ Proof System (TLAPS) includes a proof manager which interfaces
with backend verifiers. This enables the proof system to perform deductive ver-
ification of safety properties of TLA+ specifications. The proof manager inter-
prets the proofs, generates a set of proof obligations and directs them to a solver
(trusted external oracle) such as Z3, Yices, etc. The architecture of TLAPS is
elaborated in [5, Sect. 1] and the basic operations performed by the proof man-
ager are described in detail in [5–7]. In order to support proving real arithmetic
conjectures using Z3, certain changes to the SMT translation process are re-
quired. TLAPS features a type inference algorithm which assigns types to the
untyped TLA+ expressions, which we adapt to interpret reals (see Sect. 2.1).
During the syntactic rewriting stage, TLA+ expressions are encoded in the SMT-
LIB language. In the latter stage, an untyped encoding process can alternatively
delegate type inference to the SMT-solvers. This process requires new lifting ax-
ioms to assert that TLA+ arithmetic coincides with SMT arithmetic over reals
(which we adapt to include interpretation for reals; see Sect. 2.2).

2.1 Typed encodings

TLA+ is an untyped language. Hence, type encoding is required to assign types
to the untyped expressions. Assigning types enforces restrictions on admissible
formulas that can be directed to the backend verifiers. This operation is per-
formed by a type inference algorithm consisting of a constraint generation and
solving phase. The result of the constraint generation phase is a set of con-
straints based on the type environment, a TLA+ expression and a type variable.
The constraint generation rules are derived from the corresponding typing rules,
and the constraint solving phase solves the equality and subtyping constraints
and proves some residual subtype checking constraints [6].

Real Arithmetic in TLAPM 3

To enable the interpretation of TLA+ expressions containing reals, we ex-
tend the type system and type inference algorithm developed by Merz et al. in
[6] by introducing a new type Real, i.e., τ ::= Real to the existing grammar
that describes the supported types and introducing a set of typing rules. The
Reals module in TLA+ extends Integers and defines the set Real of real numbers
and the standard arithmetic operations, including the ordinary division operator
(/) [3, §18.4]. As depicted in Table 1, we define an axiom for the set of reals [T-
REAL]. The “.” in [T-NUM-REAL] represents the decimal point where literal
reals are represented as decimal numbers, which is consonant with the representa-
tion of decimals in TLA+ : c1 . . . cm.d1 . . . dn ≜ c1 . . . cmd1 . . . dn/10

n [3, §16.1.11].
We further define rules for the usual real arithmetic operations. The environment
of the arguments governs the arithmetic operation typing rule to be used dur-
ing constraint generation. For example, in the presence of a + operator, if the
arguments contain integers or reals in the form of either a number or a variable,
the typing rule of [T-PLUS] [6] or [T-PLUS-REAL] is selected, respectively.

[T-REAL] [T-NUM-REAL]

Γ ⊢ Real : Set Real

m ∈ {0, 1, 2, 3, 4, ...} n ∈ {0, 1, 2, 3, 4, ...}
Γ ⊢ m.n : {x : Real | x = m.n}

[T-PLUS-REAL] [T-LESS-REAL]
Γ ⊢ ei : ai Γ ⊢ ai ≺: Real i ∈ {1, 2}
Γ ⊢ e1 + e2 : {x : Real | x = e1 + e2}

Γ ⊢ ei : ai Γ ⊢ ai ≺: Real i ∈ {1, 2}
Γ ⊢ e1 < e2 : Bool

Table 1: Typing rules for Reals

In Table 1, Γ is a typing context. If ϕ is a formula and τ is a type, Γ ⊢ ϕ : τ
is a pre-judgement that becomes a valid judgement if it can be derived from the
typing rules. ≺: is a non-unifiable subtype relation, i.e., it checks for subtyping
without unifying type variables. These type variables are unified during the
constraint solving phase, which solves such subtyping constraints. τ1 ≺: τ2 is
valid iff both types are ground types and τ1 <: τ2 where <: is used for subtyping
and unifies type variables; the unification of type variables occurs during the
constraint solving phase.

2.2 Untyped encodings

Untyped encodings for TLA+ formulas is an alternative encoding implemented
in TLAPS. When using this encoding, type inference is delegated to the SMT
solver. Untyped encodings are used if type inference fails. In this case, a single
SMT sort U is used to represent TLA+ values and its operators are represented
as uninterpreted functions having sort U as their arguments [5]. In order to en-
code real arithmetic formulas, we declare uninterpreted functions that embed
SMT reals into the sort U representing TLA+ values, i.e., real2u : Real → U
and u2real : U → Real. Real represents SMT reals, real2u embeds SMT reals

4 O.V.W. Gunasekera et al.

into a sort U representing TLA+ values and u2real performs the reverse. This is
supported by the axiom ∀m ∈ Real : u2real(real2u(m)) = m to ensure the con-
sistency and soundness of translating SMT reals into the sort U . Real arithmetic
operations over TLA+ values are homomorphically defined over the image of
real2u using axioms. In the axiom ∀m,n ∈ Real : plus(real2u(m), real2u(n)) =
real2u(m+n), the + operation on the right-hand side denotes the built-in addi-
tion operation over SMT reals, while plus has function type U ×U → U . Similar
axioms are defined for other real arithmetic operations and utilise the existing
uninterpreted functions for operators that are introduced by Merz et al. in [5,6].

3 Safety Verification of a Hybrid System

As an illustrative example of safety verification that involves real-valued vari-
ables, we will use a model of an oscillator. The motion of a simple harmonic
oscillator, such as a mass m suspended from a spring (with spring constant k)
can be described by a second-order differential equation ẍ + ω2x = 0, where

ω =
√

k
m is the frequency of oscillation, the state variable x measures the dis-

placement of the mass from the point of equilibrium and ẍ represents the second

derivative of x with respect to time, i.e., the acceleration d2x
dt2 . The dynamics

of this system can be written down as a system of linear differential equations
ẋ = y, ẏ = −ω2x. For simplicity, let m = 1 and k = 1, so that the system
becomes ẋ = y, ẏ = −x. The system can be geometrically represented as a
vector field ⟨y,−x⟩ defined on the real plane (as shown in Fig. 1a). To reduce
the amplitude of oscillations, a damping term D(y) can be introduced into the
system to yield a damped oscillator ẋ = y, ẏ = −x−D(y) in which oscillations
die down over time.

Let us consider a hybrid automaton (illustrated in Fig. 1b) with two modes
evolving according the undamped (mode q1) and damped oscillator dynamics
(mode q2). In this model, the system switches on damping when the displace-
ment x falls below −2 (this could be done e.g., to prevent damage to the spring).
Let us suppose that the initial displacement x0 of the oscillator is only known
to be within the bounds − 1

2 ≤ x0 ≤ 1
2 and the initial velocity y0 is in the range

1 ≤ y0 ≤ 3
2 . From this set of initial conditions we wish to prove that damping

need never be applied (i.e., the hybrid automaton in Fig. 1b never transitions into
mode q2). There are a number of ways in which one can prove the safety specifi-
cation described above. A common approach (which does not involve computing
solutions to the differential equation) is to exhibit an appropriate inductive in-
variant, i.e., a set of states I ⊆ R2 such that all trajectories starting inside the
invariant remain within the invariant. A standard proof of safety using an induc-
tive invariant involves showing three things: (1.) that the proposed invariant is
indeed inductive (i.e., that the system cannot transition outside the invariant),
(2.) that all possible initial states of the system lie within the invariant, and
(3.) that the invariant contains no unsafe states that are deemed undesirable.
In order to prove our property of interest, we can employ an inductive invariant
given by formula x2+y2 < 4∧x2+y2 ≥ 1 , which corresponds an annular region

Real Arithmetic in TLAPM 5

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x

y

(a) Vector field (mode q1)

(x0, y0), q1

x ≤ −2x ≥ −1

q1

q2

x ≥ −2

x ≤ −1

ẋ = y

ẏ = −x − D(y)

ẋ = y

ẏ = −x

(b) Hybrid automaton

Fig. 1: Hybrid system model of an oscillator

illustrated in Fig. 1a, where it is seen to include all the initial states (represented
by the grey box) and none of the unsafe states (shown in red) from which the
system may transition into mode q2 where damping is applied.

Several methods exist to check whether a proposed invariant is inductive
(i.e., to solve (1.)); while these fall outside the scope of the present paper, these
methods essentially reduce the problem to one of real arithmetic. In this example,
the fact that x2+y2 is a conserved quantity can be established by checking that
its time derivative 2xẋ+ 2yẏ is everywhere zero (i.e., 2xy−2yx = 0). For solving
(2.) and (3.), the first-order theory of real arithmetic provides us with a formal
language that is expressive enough to state properties such as inclusion or non-
intersection of sets, provided that these are described using formulas that only
involve polynomials. Establishing the inclusion of the initial states within the
invariant and its non-intersection with the unsafe states in this example reduces
to proving the following sentences:

∀ x, y ∈ R. −0.5 ≤ x ∧ x ≤ 0.5 ∧ 1 ≤ y ∧ y ≤ 1.5︸ ︷︷ ︸
Initial states

→ x2 + y2 < 4 ∧ x2 + y2 ≥ 1︸ ︷︷ ︸
Invariant

,

∀ x, y ∈ R. ¬

x ≤ −2︸ ︷︷ ︸
Unsafe

∧x2 + y2 < 4 ∧ x2 + y2 ≥ 1︸ ︷︷ ︸
Invariant

 .

Figure 2 shows how both of these conjectures are represented in the TLA+ syn-
tax and successfully solved using our implementation with Z3 as a real arithmetic
backend.

6 O.V.W. Gunasekera et al.

EXTENDS TLAPS, Reals

* All possible initial states of the systems lie within the proposed invariant

* Init => Inv. The conjecture is proven true

THEOREM \A x,y \in Real: ((-0.5 <= x /\ x <= 0.5 /\ 1.0 <= y /\ y <= 1.5)

=> ((x*x)+(y*y) < 4.0 /\ (x*x)+(y*y) >= 1.0)) BY Z3

* Invariant does not contain unsafe states

* ¬(Unsafe /\ Inv) The conjecture is proven true

THEOREM \A x,y \in Real: ~((x <= - 2.0) /\ ((x*x) + (y*y) < 4.0 /\

(x*x) + (y*y) >= 1.0)) BY Z3

Fig. 2: Hybrid system safety verification: real arithmetic conjectures (2.) and (3.)

4 Conclusion

We have developed support in the TLA+ proof manager for handling first-order
real arithmetic sentences. Real arithmetic problems arise naturally in the ver-
ification of hybrid systems and our work represents a step towards facilitating
their formal verification using TLA+. Currently, our implementation employs
only Z3 as a real arithmetic backend; however, we note the potential for support-
ing additional backends in the future. In particular, tools such as MetiTarski and
dReal can – in addition serving as alternative real arithmetic backends – enable
reasoning about special functions (such as sin, cos, ln, e, etc., the presence of
which makes real arithmetic undecidable). The TLA+ proof manager currently
does not offer support for working with these kinds of functions and further
extensions to the system could be pursued to enable this functionality.

References

1. Denman, W., Muñoz, C.A.: Automated real proving in PVS via MetiTarski. In:
FM 2014. LNCS, vol. 8442, pp. 194–199. Springer (2014). https://doi.org/10.
1007/978-3-319-06410-9_14

2. Lamport, L.: Hybrid systems in TLA+. In: Hybrid Systems. LNCS, vol. 736, pp.
77–102. Springer (1992). https://doi.org/10.1007/3-540-57318-6_25

3. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley (June 2002)

4. Lamport, L.: Industrial Use of TLA+. https://lamport.azurewebsites.net/tla/
industrial-use.html (2019), [Online; accessed March 2023]

5. Merz, S., Vanzetto, H.: Harnessing SMT solvers for TLA+ proofs. Electron. Com-
mun. EASST 53 (2012). https://doi.org/10.14279/TUJ.ECEASST.53.766

6. Merz, S., Vanzetto, H.: Refinement types for TLA+. In: NFM 2014. LNCS, vol. 8430,
pp. 143–157. Springer (2014). https://doi.org/10.1007/978-3-319-06200-6_11

7. Merz, S., Vanzetto, H.: Encoding TLA+ into many-sorted first-order logic. In:
ABZ 2016. LNCS, vol. 9675, pp. 54–69. Springer (2016). https://doi.org/10.

1007/978-3-319-33600-8_3

https://doi.org/10.1007/978-3-319-06410-9_14
https://doi.org/10.1007/978-3-319-06410-9_14
https://doi.org/10.1007/3-540-57318-6_25
https://www.microsoft.com/en-us/research/uploads/prod/2018/05/book-02-08-08.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2018/05/book-02-08-08.pdf
https://lamport.azurewebsites.net/tla/industrial-use.html
https://lamport.azurewebsites.net/tla/industrial-use.html
https://doi.org/10.14279/TUJ.ECEASST.53.766
https://doi.org/10.1007/978-3-319-06200-6_11
https://doi.org/10.1007/978-3-319-33600-8_3
https://doi.org/10.1007/978-3-319-33600-8_3

Real Arithmetic in TLAPM 7

Appendix

Demo and Screencast

Instructions on how to build and install the tool along with a user manual are
available in the INSTALL and User Manual.txt files, respectively, at https:

//github.com/Ovini99/TLAPS_Real. A screencast of a demo of the extended
TLAPM is available at https://github.com/Ovini99/TLAPS_Real/tree/main/
demo.

Based on the encodings in Sect. 2, we generated two files to run through the
extended proof manager (via Toolbox and command line). The first file contains
a combination of arithmetic formulas where the proof manager successfully infers
the types and are proven true; a sample of such formulas is depicted in Fig. 4.3.
The complete list of examples is available in RealIntsTest.tla. A second file, i.e.,
RealIntsTestFail.tla, includes examples of formulas where the typed and untyped
encodings fail or the encodings successfully infer the types, but the conjecture
is proved false. A sample of such formulas is depicted in Fig. 4.4.

Further, we generated two files (RealNumExample1.tla, RealNumExample2.tla)
to prove the theorems related to the hybrid automaton in Section 3.

EXTENDS TLAPS, Reals, Integers

* Encoding will succeed.

* All variables are of type Real.

* The conjecture will prove true since there is a solution.

THEOREM \E x,y,a,b \in Real:((x*x)+(y*y))*((x-b)*(x-b))=a*a*x*x BY Z3

* Encoding will succeed.

* All variables are of type Int.

* All number are integers. Use of integer division.

* The conjecture will prove true since there is a solution.

THEOREM \E x,y \in Int: y + (1 \div 1) = x BY Z3

* Encoding will succeed.

* Variable x is a real between -5.0 and 5.0.

* 0.0 and 5.0 are expressed as reals.

* The conjecture will prove true since there is a solution.

THEOREM \E x \in (-5.0..5.0): x*x - 5.0 = 0.0 BY Z3

Fig. 4.3: Sample of conjectures from RealIntsTest.tla

https://github.com/Ovini99/TLAPS_Real
https://github.com/Ovini99/TLAPS_Real
https://github.com/Ovini99/TLAPS_Real/tree/main/demo
https://github.com/Ovini99/TLAPS_Real/tree/main/demo

8 O.V.W. Gunasekera et al.

EXTENDS TLAPS, Reals, Integers

* Encoding will fail.

* Mixing of reals and integers is not permitted.

* Variable x is of type Real and number 0 is of type Int.

THEOREM \E x \in Real: x - 0 = 1.0 BY Z3

* Encoding will fail.

* Division is not supported between integers.

* Integer division should have been used instead.

THEOREM \E x,y \in Int: y + (1/1) = x BY Z3

* Encoding will succeed.

* Variable x and -1.0 are both Reals.

* The conjecture will prove false since

* there is no solution in Real.

THEOREM \E x \in Real: x*x = -1.0 BY Z3

Fig. 4.4: Sample of conjectures from RealIntsTestFail.tla

	Real Arithmetic in TLAPM

