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Brief Overview of RL and Safe RL

Reinforcement learning addresses optimisation problems such as optimal control where 
other machine learning paradigms such as supervised and unsupervised fail [1]. 
Fundamentally optimal control is a field of mathematics that studies the problem of 
finding the best control strategy for a system, given a set of constraints and a criterion 
that defines optimality. Reinforcement learning algorithms have been shown to handle 
highly complex and uncertain environment dynamics which makes them well suited to a 
plethora of real-world applications such as autonomous vehicles and robotics. RL is also 
highly data efficient, in that it can learn from a limited quantity of data, which in many 
problem spaces is real barrier to entry for conventional ML paradigms.

Safe reinforcement learning is a subfield of RL that focuses on the safety and reliability 
of reinforcement learning algorithms. The key motivation behind the discipline is the 
exploration-exploitation mechanism that enables conventional RL algorithms so learn. 
When training begins there is more weight given to choosing random actions to expand 
the known state space and nearer the end of training there is more weight given to 
choosing actions based existing knowledge of state space. This mechanism creates a 
problem in safety critical environments because the nature of the stochastic policy could 
potentially cause damage to the agent or the environment which in application contexts 
such as self-driving cars or military drones would be detrimental.
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Figure 1: Schematic of 
Reinforcement learning 
Paradigm [1].

Markovian sequential decision-making problems are often formulated as Markov 
decision process (MDP). MDPs are used across a variety of fields including RL, 
operations research and control theory. An extension of the MDP is the constrained 
MDP (CMDP) where the tuple includes a set of constraints which can be used to 
model properties such as safety. A formulation of a constrained Markov decision 
process is shown in figure 2.

Figure 3 shows is an alternative formulation of the safe RL problem. We aim to 
maximize the value function for some policy π of some state s at a given timestep t
subject to the safety function evaluation of that state s and time step t being at or 
above some scalar threshold h which is problem specific [2].

Figure 3: Safe RL problem formulation [2].

Why Bayesian non-parametric models?

Deep neural networks (DNNs) have been a very popular choice for function 
approximators in classical reinforcement learning in recent years [3][4], however 
Bayesian non-parametric (BNP) models offer some unique advantages over DNN’s 
when optimizing for safety.

• DNN’s have been shown to be very sensitive to distributional shifts in input data 
which in reinforcement learning problems is very common. Distributional shifts in 
observation data can occur for several reasons, but the most common is the non-
stationarity of environments where the underlying distribution of states and 
actions change over time. In contrast BNP models are designed to be robust to 
distributional shifts in data and can learn flexible distributions that capture the 
underlying structure of the data.

• BNP models can capture and quantify uncertainty which is especially useful in safe 
RL as many environments where safe RL algorithms are applicable often have high 
levels of uncertainty. BNP models can use this when making decisions in these 
uncertain environments to ensure safe actions are taken whereas DNNs have no 
natural way of modelling uncertainty.

• DNNs are notoriously uninterpretable [5] whereas BNP models provide highly 
interpretable models as a result of their simpler model structure and transparent 
uncertainty approximations. The inherent interoperability can help in explaining an 
agent’s behavior and actions which is especially useful in safety critical application 
contexts.

Figure 2: Constrained Markov decision 
process [2].

Figure 4: Illustration of 
gaussian process regression in 
1 dimension [6]

Figure 4 shows an illustration of a 1-dimensional 
gaussian process which is a popular BNP model. 
The uncertainty is captured as the blue shaded 
area, so the larger the shaded are at certain points 
in the function the less certainty there is in the 
approximation.

Ongoing work

Stability of MARL in the face of perturbed communication:
Some of our ongoing work is looking at the stability and resilience of certain multi-
agent reinforcement learning (MARL) algorithms in the face of severe network 
interruptions. These interruptions could affect the availability of communications 
mediums, or the integrity of messages sent. We are specifically interested in the multi-
agent deep deterministic policy gradient algorithm (MADDPG) and the multi-agent 
proximal policy optimization (MAPPO) algorithm as they both demonstrate good 
performance on the multi-particle environments that best simulate groups of 
cooperating and competing autonomous systems [7][8].

Improving the SafeMDP algorithm:
Our ongoing work also includes a paper that is looking to improve the robustness of 
the SafeMDP algorithm [9] which utilizes a gaussian process to approximate safety in 
highly uncertain environments. SafeMDP provides desirable theoretical guarantees 
and demonstrates good empirical performance. We aim to use the SafeMDP algorithm 
as a base and develop a new algorithm which is based on a similar model to the 
gaussian process but with improved empirical performance w.r.t outlier observations 
and to build on the existing theoretical guarantees.

Figure 5: Screenshot of environments in the multi-
particle environment (MPE) from the MADDPG 
paper [7]


