
RAFL: A Robust and Adaptive Federated
Meta-Learning Framework Against Adversaries

Zhengxin Yu, Yang Lu, Neeraj Suri
School of Computing and Communications, Lancaster University, United Kingdom

Email: {z.yu8, y.lu44, neeraj.suri}@lancaster.ac.uk

Abstract—With the emergence of data silos and increasing
privacy awareness, traditional centralized machine learning pro-
vides limited support. Federated learning (FL), as a promising
alternative machine learning approach, is capable of leveraging
distributed personalized datasets from multiple clients to train a
shared global model in a privacy-preserving manner. However,
FL systems are vulnerable to attacker-controlled adversarial
clients that potentially conduct adversarial attacks by uploading
unreliable model updates or clients unintentionally uploading
low-quality models leading to degraded FL performance and
reduced resilience to attacks. In this paper, we propose RAFL:
a new robust-by-design federated meta learning framework
capable of mitigating adversarial model updates on non-IID
data. RAFL leverages 1) a residual rule-based detection method
and a Variational AutoEncoder (VAE) learning based detection
method combined to distinguish adversarial clients from benign
clients. 2) a similarity-based model aggregation method to reduce
the likelihood of uploading adversarial models from adversarial
clients. 3) multiple learning loops to collaboratively train multiple
personalized detection models against adversaries effectively. Ex-
perimental results demonstrate that our proposed FL framework
is robust by design and outperforms other defensive methods
against adversaries in terms of model accuracy and efficiency.

Index Terms—Federated Learning, Deep Learning, Adversar-
ial Client Detection, Robust Aggregation

I. INTRODUCTION

Federated Learning (FL) is a Machine Learning (ML)
approach whereby multiple clients (e.g., mobile devices, au-
tonomous cars) collaboratively train a global ML model with-
out sharing individual client data [1]. FL has been adopted
across applications such as finance [2], healthcare [3] and
Multi-access Edge Computing (MEC) [4]. In a typical FL
scenario, a central server periodically updates a global model
via collecting and aggregating local client models. As no client
data is exchanged during the whole process, FL can inherently
provide privacy and security guarantees to participating clients.

However, the quality of global models trained by FL may
be degraded if clients upload inaccurate local models. Such
inaccurate uploads can be due to non-deliberate failures from
clients and/or adversarial attacks by corrupted clients [5]. Non-
deliberate failures may be caused by noisy training labels,
poor training datasets, or unintentional upload of low-quality
local models from high mobility [6] [7]. Alternately, corrupted
clients could distort their local model uploads by intentionally
launching various data poisoning attacks, e.g., Byzantine at-
tacks [8] and backdoor attacks [5] [9].

Two prominent defensive approaches are typically advo-
cated to deal with adversarial attacks in FL, namely, robust

learning and adversarial client detection. The robust learning-
based approaches try to ensure a lower bound on the global
model learning accuracy whilst tolerating a subset of corrupted
clients [8] [10] [11] [12] [13]. In contrast, the adversarial client
detection-based approaches first identify potential corrupted
clients by examining abnormal local model uploads, and then
remove the local models of these clients over the global model
aggregation [14] [15] [16].

While the above two approaches have been shown to be
effective in enhancing FL security for a variety of applications,
both have specific limitations. Typical robust learning methods
require FL setting assumptions such as a limited number/type
of adversarial clients [8] [10] [12], or prior knowledge of client
data distributions (i.e., independent and identical distribution
(IID)) [11] [13]. However, such assumptions are infeasible in
dynamic scenarios. These adversarial client detection meth-
ods require access to sanitized public datasets for detector
mechanism training [14] [16] or static rules to predict client
model updates [15]. However, using public datasets contrasts
to FL’s goal of protecting privacy of individual clients’ data.
Moreover, FL clients commonly exhibit substantial join/leave
behavior during the training process, thus applying static rules-
based methods is infeasible. Such methods are unable to
detect adversarial clients exhibiting moving target behavior via
learning predictor rules or injecting late-time faults within the
FL communication round to avoid detection. Such approaches
result in degraded model accuracy and reduced resilience to
attacks, and incur communication overhead between the server
and clients.

In this paper, we propose a new Robust and Adaptive Fed-
erated meta Learning framework (RAFL) capable of reducing
adversarial and unintentional low-quality model updates on
non-IID data without any prior dataset knowledge. The frame-
work comprises three complementary techniques to enhance
FL robustness by combing adversarial client detection and
robust learning. For detection, we propose a residual rule-
based method to distinguish adversarial clients from benign
clients by leveraging key characteristics in the rank domain of
model updates. The detected adversarial clients are removed
and remaining clients are clustered based on model updates
for different applications. An online variational autoencoder
(VAE) based detection model is proposed to further detect
and remove the imperceptible abnormal model updates based
on their low-dimensional embeddings in latent space. This
is trained using collected sanitized dataset from rule-based

methods. In latent space, the reconstruction error of adversarial
clients are much larger than typical clients, thus adversarial
clients can be easily differentiated. Using VAE achieves finer-
grained detection via hidden features from model updates.

These two detection methods are integrated into a frame-
work with a robust learning and a robust model aggregation
components. We combine meta-learning with FL elements to
provide a robust-by-design framework by generating multiple
learning loops with each loop focusing on discrete data clusters
to train bespoke learning-based detection models. To further
enhance robustness, a similarity-based model aggregation al-
gorithm is developed to aggregate a meta-model in each cluster
by using Canonical Correlation Analysis (CCA) similarity
to decide the aggregation weight of participating clients. To
summarize, our main contributions are as follows:

• A robust-by-design federated meta-learning architecture
is proposed to adaptively defend against a range of
adversarial attacks.

• A composite rule-based and learning-based detection
method to effectively identify adversarial clients via rank-
ing domain and low-dimensional embeddings.

• An adaptive model aggregation method is proposed to
aggregate the global model by considering the degree of
similarity between the meta-model and calculated mean
model to resilience attacks.

The rest of this paper is organized as follows. Section II
reviews the related work. The system and threat models of
RAFL are presented in Section III. Design details of the RAFL
are described in Section IV. Evaluation results are given in
Section V. Finally, Section VI concludes this paper.

II. RELATED WORKS

Robust Federated Learning: Robust FL-based works
leverage selected statistics of local model updates to introduce
additional rules in the global model aggregation/update to fa-
cilitate model accuracy in the presence of attackers. Blanchard
et al. [8] proposed an aggregation rule (termed Krum) to
select a simple model update among clients’ model updates to
aggregate the global model by using Euclidean distances. Xie
et al. [10] developed a median-based robust aggregation rule
(Medoid) for synchronous Stochastic Gradient Descent (SGD)
with low time complexity and provable convergence to critical
points. Yin et al. [11] designed a coordinate-wise aggregation
rule (Trimmed Mean) to aggregate the model update of each
coordinate separately. Chen et al. [12] designed a variant of
the classical gradient descent method based on the geometric
median of means of the gradients (GeoMed). Li et al. [17]
introduced an additional l1-norm regularization on the cost
function to achieve robustness against Byzantine attacks in
distributed learning. Such approaches may result in a biased
global model or limited mitigation against adversarial attacks.

Detection-based Federated Learning: This category of
research has developed detection-based methods which can
distinguish adversarial from benign clients and remove adver-
sarial clients in model aggregation. Shen et al. [18] proposed a
detection-based approach for backdoor attacks in collaborative

ML. Sun et al. [9] designed a low-complexity defense mecha-
nism that mitigates the impact of backdoor attacks in FL tasks
through model weight clipping and noise injection. Li et al.
[14] presented a variational autoencoder model based detector
to detect and remove adversarial. As an extension of [14],
Gu et al. [16] utilized a conditional variational autoencoder
to distinguish adversarial clients from benign clients. Most of
these methods require a clean public dataset in the server to
train a basic model, which is in contrast to the original goal
of FL. Zhang et al. [15] relied on sizeable historical data on
client model updates to perform prediction leveraging static
rules. However, in real-world scenarios, clients are constantly
changing, which makes it hard to predict their model updates.

III. SYSTEM AND THREAT MODEL

System model: Our goal is to identify adversarial clients
and eliminate their negative impact on FL model training
performance.We consider a conventional FL system model,
comprising a MEC server (e.g., a master autonomous car, a
base station, or roadside unit) and N clients (e.g., autonomous
cars, mobile devices or unmanned aerial vehicles). Clients
generate their own local datasets, D1, ...,DN . At each com-
munication round, the MEC server randomly selects a subset
of clients to train a shared global model on their respective
local datasets. Due to data privacy concerns, clients will only
upload their model updates to the MEC server.

Threat model: FL is vulnerable to adversarial attacks due
to adversarial clients uploading unreliable model updates. The
objective of adversarial clients is to send low quality model
updates aiming to reduce the model performance of the final
shared global model. We present the threat model adopted in
this paper by considering the capabilities of adversarial clients
as: (i) Any client can be adversarial; (ii) Adversarial clients are
capable of continuously participating within the FL training
process identical to a benign client [19]; (iii) Adversarial client
can collude with other adversarial clients within current and
future communication rounds [6]; and (iv) Adversarial clients
can access participating client model architecture, parameters
and dataset knowledge (size, type, distribution) within any FL
communication round [6] [14] [15].

The constraints on the threat model are: (i)The upper bound
on the number of adversarial clients is not more than 50%
of the total clients [14] [16] [20]; ii) Adversarial clients can
only know a stale version of the model [6]; (iii) The server
is assumed to be benign [8] [21]. The threat model captures
diverse adversarial behaviors and covers multiple attack types,
including Sign Flipping [22], Additive Gaussian Noise [14],
A Little is Enough Attack [23], and Zero Gradient [20].

IV. ROBUST AND ADAPTIVE FEDERATED META
LEARNING FRAMEWORK (RAFL)

Following an overview of the RAFL approach, we present
our rule-based and learning-based detection methods to iden-
tify and remove adversarial clients from the framework. We
describe the similarity-based model aggregation to further re-
duce the negative impact of adversarial clients. Our framework

Updated
Model 𝜃1

Local Dataset

Downloaded
Model 𝜃∗

Upload Model Download Model

… …

Client 1 Client N

Similarity-based Model Aggregation

Robust-by-Design Federated M
eta Learning

Detection Models

Static rules Online VAE learning

Clients

Inner loop 1 Inner loop N

Robust
Aggregation

∑
𝜃!
𝜃"
𝜃#Outer loop

𝜃∗

1

2

3

MEC Server

Inner loops

Fig. 1. RAFL System Architecture

comprises three components: Federated Meta Learning,
Detection, and Model Aggregation, as shown in Fig. 1.

1) Federated Meta Learning (Sec IV-A): Clients collect
local data to perform model training to collaboratively train a
shared global model in the MEC server by utilizing inner and
outer loops. However, FL is susceptible to adversarial attacks
due to adversarial clients uploading unreliable model updates
resulting in degraded model performance.

2) Detection (Sec IV-B): To defend against adversarial
attacks, we combine a rule-based and learning-based adver-
sarial detection model to identify adversarial clients in the
MEC server. The rule-based detection leverages a residual-
based detection model via a ranking matrix to rapidly detect
adversarial client behavior. The learning-based detection using
VAE online learning model to further identify abnormal model
updates according to their low-dimensional embeddings.

3) Model Aggregation (Sec IV-C): In the outer loop,
a similarity-based model aggregation method is designed to
conduct a global meta-model to further reduce the likelihood
of uploading adversarial models from clients.

These three components combine robust learning with ad-
versarial client detection to enhance FL robustness. Federated
meta learning and model aggregation provide for robust learn-
ing and a framework-level defense against adversarial clients.
For adversarial client detection, the rule-based and learning-
based detection methods use different approaches to detect
adversarial clients, consequently providing different detection
granularity. The rule-based method detects adversarial clients
by analyzing clients’ parameter dimensions, while an online
VAE detector utilizes extracted client features to identify
adversarial clients. The VAE model is trained online based
on the dataset collected from the rule-based method.

A. Federated Meta Learning

RAFL leverages local computation resources from clients
and the MEC server/leader client for training personalized
detection models on non-IID data against adversaries and
rapidly adapting to new environments. The framework consists
of associating discrete training loops to each of the decen-
tralized data clusters. This is achieved via having separate
learning loops for model training: Inner loop for task-level
and Outer loop for cluster-level [24], as outlined in Algorithm
1. The Inner loop trains the task-specific detection model and
executes it on the client device, from line 8 to 11. The Outer
loop trains a cluster-level meta detection model which extracts
common features from all task-level detection models within
each cluster and executes it on the MEC server, from line 2
to 6 and 12 to 33. In our scenario, the clients are grouped
into k disjoint clusters based on different applications since
clients may use different applications/services, resulting in het-
erogeneous data distributions. The learning tasks in each client
are correspondingly allocated into K clusters. The learning
tasks T in K clusters are defined as T̂ = {T 1, T 2, ..., T K}.
Among all clusters, the multiple personalized detection models
are trained by dynamically generating different learning loops
(Outer loop and Inner loop) as well as addressing non-IID data.
The outer loops extract common features from inner loops,
while inner loops train task-specific models in clients.

Consequently, RAFL provides a robust-by-design frame-
work given that these discrete inner/outer learning loops ex-
ecute model training independently. Consequently, RAFL can
provide sustained FL performance even if a few learning loops
fail. For example, if some inner loops cannot work properly,
other inner loops in the cluster can upload their model updates
to the MEC server to aggregate a new global model and the
MEC server can send the new global model to failed learning
loops at the next communication round in order to start the
new model training. If some outer loops fail, other outer loops
at different MEC servers can share their meta-model with the
failed outer loops.

Inner loop. A task-level model training, each client has a
learning task T ki with its local dataset Di. Thus, a training
model f (θi,Di) parameterized by θ is as follows [24]:

θ∗i = argmin
θi∈R

Lin (Di; θi, w) , (1)

where Lin is an inner loop (task-level) loss function to
measure the error between true labels and predicted labels.
w is the parameters of meta model in the outer loop which
specifies assumptions about how to learn. θ is a p-dimensional
parameter vector. θ∗ is the updated local model. The target
function of inner loop is to minimize Lin. We define the loss
function Lin as in [25]:

Lin = fi (θi) +
λ

2
∥θi − w∥2 , (2)

where λ controls the contribution of w to the task-specific
model. It is a regularization parameter by utilizing a reg-
ularized loss function with l2-norm for each client. This
loss function applied the first-order approximation method

Algorithm 1: RAFL runs on N clients (indexed by i).

1 Federated Meta Learning:
2 Outer loop:
3 N clients are grouped into K clusters
4 for each cluster k ∈ {1, · · · ,K} in parallel do
5 MEC server send w to all clients
6 wk = wk,0
7 for each communication round t ∈ {1, · · · , T} do
8 Inner loop:
9 for client i ∈ {1, · · · , N} in parallel do

10 θti ← θt−1
i − α▽Lin

(
θt−1
i

)
11 end
12 Adversarial Client Detection:
13 if t%10 == 0 then
14 Convert all θti to R matrix
15 Compute e and v of the column in R
16 Run K-means with k = 2
17 Remove adversarial clients i
18 Send θti to MEC server
19 Save sanitized dataset DV AE

20 else
21 Utilize DV AE to train VAE model
22 VAE are updated by SGD based on Eq. (10)
23 zi = µ+ σ ⊙ ϵ
24 Remove adversarial clients
25 Send client model update θti to MEC server
26 end
27 end
28 Similarity-based model aggregation:
29 wtk ← (1− β)wt−1 + β

∑N
i=1

θt−1
i

|Di| ∗ ε.
30 Update the global model in MEC server
31 wk,0 = wtk
32 end
33 Return wk,0

to remove the second derivative when backpropagating the
meta-gradients, which may cause large communication and
computation costs.

To obtain θ∗i , RAFL optimizes this loss through SGD [26]:

θti = θt−1
i − α▽Lin

(
θt−1
i

)
,

s.t. θ0i = w, t = 1, 2, 3, ...T,
(3)

where t is the current communication round in the FL model
training. T is the total number of communication rounds. The
initialization of the model θ1i in the inner loop for the first
communication round is the parameters of meta-model w in
the outer loop.

Outer loop. For Cluster-level model training, the aim of the
outer loop is to learn a general purpose meta-model w that
can generalize across tasks within each cluster. The trained
meta-model enables new tasks to be learned faster and more
effectively than typical ML algorithms. Most importantly,

meta-models can support each task to achieve a personalized
model. The loss function of outer loop can be expressed as:

Lou =
1

N

N∑
i=1

Fi (w) ,

where Fi (w) = min
θi∈R

{
fi (θi) +

λ

2
∥θi − w∥2

}
.

(4)

The outer loop to update the meta-model is as:

wt = (1− β)wt−1 + β

N∑
i=1

θt−1
i

|Di|
, (5)

where β is a parameter to decide the weight of cluster-level
model updates from the last communication round. The data
size of each client has also been considered when calculating
the updated model updates in the new communication round.

B. Adversarial Clients Detection

To defend against adversarial attacks, we combine a rule-
based and learning-based adversarial detection model to iden-
tify adversarial clients. Static rule-based detection can be
applied to detect adversarial clients without prior training,
however exhibits weak adaptability to changing scenarios
and cannot detect abnormal client behavior such as moving
targets. Learning-based methods can adapt to dynamic sce-
narios yet are generally data-intensive (need large datasets)
and require longer training time. As such, we have combined
both approaches to address to overcome the aforementioned
weaknesses when performing detection. Rule-based detection
is deployed within the MEC server and leverages a residual-
based detection model via a ranking domain to roughly de-
tect adversarial client behavior and collect training data for
learning-based method. The learning-based detection uses a
VAE model to further identify abnormal model updates accord-
ing to their low-dimensional embeddings, and resides within
clients or MEC server. Each cluster trains a VAE detector
online. We introduce the training process, respectively, of a
rule-based model and VAE-based online detection model.

Residual Rule-based Detection Model: All participating
clients sent their model updates to the MEC server to aggregate
the global model, but these model updates may contain adver-
sarial model updates. Inspired by [20], we utilize a ranking
matrix R to detect adversarial model updates, since adversarial
model updates have different key characteristics of the rank
domain (e.g., abnormal mean and standard deviation). As
shown in Fig. 2, we first combine all model updates to a model
matrix, M ∈ Rn×p. We assume that there are N participating
clients and each client train a model parameterized by θ which
is a p-dimensional parameter vector. The model matrix M can
be defined as:

Mi,: =

∥∥θ∗i − θ0i ∥∥
Ni

, (6)

C
lie

nt
s

N
o

𝑁1

Model Parameters

𝑁2

𝑁𝑛

𝜃1

…

… … 𝜃p

Model Matrix M
0.04 0.61 … 0.40 0.90

0.98 0.34 … 0.51 0.42

0.36 0.52 … 0.06 0.01

… … … … …

0.19 0.92 … 0.74 0.32
𝜃2

1 3 … 2 4

4 1 … 3 3

3 2 … 1 1

… … … … …

2 4 … 4 2

Ranking Matrix R

K-means

Fig. 2. Rule-based detection

which is determined from

θ∗i = θ0i −
1

Ni

Ni∑
i=1

∂f (θi,Di)
∂θ

,

θ0i − θ∗i =
1

Ni

Ni∑
i=1

∂f (θi,Di)
∂θ

,

(7)

where the locally trained model is parameterized by θ, θ∗ is
the updated local model. We then transfer the M matrix to
a ranking matrix R. Each column in M maps its elements
to its respective permutation, ranked in descending order e.g.,
R (2.3,−3.1, 1.8) = (1, 3, 2). M:,j replaces the corresponding
R:,j = R (M:,j) to retain its original vector position [20].

Next, we utilized the ranking matrix R to define the mean
and variance of Ri,: as follows:

ei =
1

p

p∑
j=1

Ri,j and vi =
1

p

p∑
j=1

(Ri,j − ei)2 . (8)

Based on the calculated e and v, K-means is applied to cluster
clients into two classes (benign clients and adversarial clients).
We assume benign clients constitute the majority. In this way,
adversarial clients can be easily found, however this detection
model follows static rules which cannot detect moving target
adversarial or imperceptible clients. Thus, we first remove the
detected adversarial clients, and then the rest client model
updates are collected to generate a relatively sanitized public
model updates dataset DV AE to train an online learning
model to further detect imperceptible adversarial clients. The
pseudocode of the rule-based detection is presented in the
Algorithm 1 lines 14-19.

Variational AutoEnocder based Online Detection Model:
We propose an online learning-based Variational AutoEncoder
(VAE) detector to identify adversarial model updates based on
reconstruction error and similarity of latent vector in latent
space. Adversarial clients can be easily detected through VAE
model, since the essential features of adversarial clients in
latent space are substantially different from benign clients. In
latent space, only essential features are retained and irrelevant
features are removed [14]. VAE is an unsupervised learning
model that extracts features from low-dimensional embeddings
by copying its inputs to outputs. The VAE architecture as
shown in Fig.3 consists of an encoder and a decoder. The
encoder takes x as input and its output is a hidden represen-
tation z that is the low-dimensional embeddings. The decoder
then utilizes these embeddings to reconstruct x and generate

Reconstructed
input

𝝁

Encoder
q (z | x)

Decoder
p (x | z)

Latent vector
z ~ q (z | x)

X
𝝈

𝜺

X’

Input X ≈ X’

Mean

Std. dev

z	 = 𝝁 +𝝈 ⨀𝜺
𝜺 ~𝓝(0, 𝑰)

⨀

Remove

Similarity of latent
vector KL(Z, Z’)

Reconstruction error
MSE (X, X’)

Anomaly
Score

Latent space

Fig. 3. Variational AutoEnocder Model

a reconstruction error used to optimize the parameters of the
encoder-decoder model until it converges.

In VAE, the low-dimensional embeddings retain key fea-
tures captured from uploaded clients’ model updates. More-
over, VAE can remove noisy and redundant features within
low-dimensional latent space as well as easily differentiate
adversarial client embeddings due to their large reconstruction
errors. We use the obtained sanitized public model updates
dataset DV AE from the rule-based detection model for VAE
model training. The VAE model can recognize adversarial
model updates as they trigger much higher reconstruction
errors than benign model updates. We train the VAE model
online over a newly updated dataset DV AE every few commu-
nication rounds since clients constantly join/leave FL training.
In this way, our detection model can quickly adapt to new en-
vironments and detect new attack variants. In our experiments,
we execute the rule-based model every 10 communication
rounds to obtain the new dataset DV AE .

Specifically, we denote the encoder as qψ (z | x), where ψ is
weights and biases. The lower-dimensional space is stochastic.
The output of the encoder is a Gaussian probability density.
The representations z are sampled from this distribution and
then feed z to the decoder to generate new samples that
follow the original data distribution. The decoder is denoted
by pϕ (x | z), with its input as z representation, and outputs
parameters to data probability distribution of X , and weights
and biases ϕ. The objective of the VAE training process is to
maximize the probability of each x, given by:

p (x) =

∫
p (x | z) p (z) dz (9)

The VAE loss function is the negative log-likelihood with
a regularizer. The loss function li for datapoint xi is:

li (ψ, ϕ;xi) = −Ez∼qψ(z|xi) [log pϕ (xi | z)] +
KL (qψ (z | xi) ∥ p (z)) .ℓ (ψ, ϕ;xi)
= −Ez∼qϕ(z|xi) [log pψ (xi | z)] +
KL (qϕ (z | xi) ∥ p (z)) .

(10)

In order to train a VAE, two losses are used: reconstruction loss
and similarity loss. These two losses also decide the threshold
for adversarial client detection. The first term of Eq. 10 is the
reconstruction loss, used to measure how much information is
lost. It aims to learn a reconstruction as lossless as possible.
In other words, reconstruction loss is the mean squared error
(MSE) loss of the input and reconstructed output. The second

term of Eq. 10 is similarity loss, which is the Kullback-Leibler
(KL) divergence between the distribution of encoder qψ (z | x)
and p (z). This divergence can measure how close q is to p.
It forces the latent space’s distribution to be similar to the
assumed standard Gaussian distribution (zero mean and unit
variance), p (z) = N (0, 1).

The latent vector z is drawn from the encoder generated
distribution, which is a random sampling. It makes difficult
for backpropagation, since we cannot trace back errors in the
encoder. To solve this problem, we use reparameterization to
model the sampling process allow errors to propagate through
the encoder network. Latent vector z can be rewritten as z ∼
pψ (z|x) = N

(
µ, σ2

)
into z = µ+ σ ⊙ ϵ, ϵ ∼ N (0, 1) [27],

where µ is the mean, σ is the variance of Gaussian distribution,
and ϵ is an auxiliary noise variable.

Stochastic gradient descent (SGD) is used to optimize VAE
with regard to the parameters of encoder ψ and decoder ϕ.
The encoder parameters are updated using ψ ← ψ − ρ ∂l∂ψ .
Similarly, the decoder is ϕ ← ϕ − ρ ∂l∂ϕ with step size ρ of
SGD. The pseudocode of the VAE-based detection is shown
in the Algorithm 1 lines 21-25.

Dynamic Threshold for Adversarial Client Detection:
We applied the VAE-based detection model in every FL
communication round to detect adversarial updates after ex-
ecuting the rule-based detection model. Due to the dynamic
environment, we set a dynamic detection threshold to detect
adversarial updates by considering both reconstruction error
and similarity of latent vector (Anomaly score = reconstruction
error + similarity loss), as we discussed in VAE detection
model. It can dynamically calculate the average value of all
reconstruction errors and similarity loss. Compared with this
dynamic threshold, clients with larger reconstruction errors
and similarity losses are recognized as adversarial clients and
excluded from the aggregation step within the outer loop. Only
benign clients participate in the aggregation process to conduct
the global meta-model. The details of the aggregation method
are described in Sec. IV-C and Algorithm 1 lines 28-29.

C. Similarity-based Robust Model Aggregation.

To further reduce the likelihood of uploading low-quality
model updates from clients, we propose a Canonical Correla-
tion Analysis (CCA) similarity-based model aggregation algo-
rithm, as shown in Fig.4. It applies to the model aggregation
step in the outer loop during the FL training process. Firstly,
we calculate the mean value of model updates θavg . Then, we
utilize CCA to achieve similarity scores. CCA can measure
representation similarities between the calculated mean model
updates and each client model updates by calculating distances
between DL models [28]. This calculated distance is used as
the similarity score. The similarity score decides the weight
of the client when executing the model aggregation. The
larger weight is given to the higher similarity score. We use
ε to represent the similarity score which is converted to a
percentage. Finally, the model aggregation in each outer loop

Calculate Mean

Similarity-based model aggregation

Low

High

Sim
ilarity

Outer loop

𝛚𝑜𝑢 = ∑ 𝛚𝑖𝑛 Meta parameter

Inner loop

Learning
task

Input

𝛚𝑖𝑛

Fig. 4. Similarity-based model aggregation

can be expressed as:

wt = (1− β)wt−1 + β

N∑
i=1

θt−1
i

|Di|
∗ ε, (11)

as shown in Algorithm 1 lines 29-31.
All of these aforementioned methods operate in tandem

enabling the RAFL framework to operate. The complexity of
both rule-based and VAE-based detection models is O (q). The
time complexity of RAFL is roughly linear to the number of
global meta-model parameters.

V. PERFORMANCE EVALUATION

This section presents the experimental results of RAFL.
We evaluate the performance of RAFL in image classification
tasks with three models over three public datasets under four
attacks. We demonstrate the effectiveness of our method by
comparing it with five reference methods.

A. Experiment Settings

To evaluate the performance of our proposed RAFL frame-
work, we consider an edge computing environment with mul-
tiple MEC servers coordinating 100 clients, executing within
a HP Z440 workstation (i9 processor and GTX 3090). The
computational capabilities of clients are heterogeneous. All
100 clients contain local datasets which are used to perform
model training. The model aggregation is conducted on one
of the MEC servers. Our experiments are performed on ML
frameworks PyTorch v1.11.0 with CUDA v11.3.

B. Datasets

We utilize three datasets to evaluate our proposed RAFL
for image classification tasks. These datasets have been widely
used as benchmarks in FL [12] [14] [15].

MNIST: A 0-9 handwritten digits dataset, containing a
training set of 60,000 examples and a test set of 10,000 exam-
ples. We shuffle data into 200 shards and each shard consists
of 300 data examples. Each client is randomly assigned with
2 shards to simulate a heterogeneous environment setting with
Non-IID data distribution.

Cifar-10: A 80 million color image dataset with labels,
consisting of 60,000 32×32 images in 10 classes. Similar to
the setting of MNIST dataset, we assign 2 shards to each client
for a heterogeneous FL setting.

C. ML models

Logistic Regression (LR): A supervised learning classifi-
cation algorithm used to predict the probability of a target
variable. We use the MNIST dataset to train an LR model.

Deep Neural Networks (DNN): A neural network with
multiple hidden layers between the input and output layers.
In our experiments, the model architecture is 784×100×10,
trained by the MNIST dataset.

Convolutional Neural Network (CNN): A class of neural
networks for processing data that has a grid-like topology.
It consists of convolutional layers, pooling layers, and fully
connected layers. The model in our experiments is trained by
using Cifar10 with 2 CNN layers (5×5×32 and 5×5×64),
followed by a dense layer with 2048 units.

Variational AutoEncoder (VAE): VAE is our learning-
based anomaly detector in RAFL, as discussed in Sec. IV.
It is a generative model based on latent variables, consisting
of an encoder and a decoder. The dimension of the input and
output layers depends on different datasets. The latent vector
changes correspondingly.

D. Attacks

Four attacks are considered in our experiments. These
attacks have been briefly mentioned in Sec. III. More details
of the attack configurations are provided next:

• Sign Flipping Attack: Generates adversarial client gra-
dient values via flipping the sign of the average sum of
benign client gradients at each epoch. The updated model
of a adversarial client i is wi = −rwi, where r > 0. We
assume that wi is a fixed vector without randomness.

• Additive Gaussian Noise Attack : The adversarial client
adds Gaussian random noise which are independent ran-
dom samples following a Gaussian distribution to its
model update wi. We assume that these independent
Gaussian variables have the same mean yet different
variances under attacks.

• A Little is Enough Attack: This attack aims to prevent
model convergence by hiding small perturbations within
the variance of model gradients from benign clients. The
adversary works by controlling the adversarial clients to
send gradients computed from Mean.

• Zero Gradient Attack: Performs sign flipping in an
attempt to modify the aggregated model to record a zero
value at each epoch. The zero gradient attack is a special
case of sign flipping attack, where wi = −rwi and r = 0.

E. Benchmark Defense Schemes

No-attack: No-attack indicates the model is trained by
model updates from 100% benign clients, which provides the
best model performance.

FedAvg: is a baseline of FL that allows local clients to
perform more than one batch update on the local dataset and
exchanges the updated weights, instead of gradients [1].

GeoMed: Instead of taking the weighted average of the
local model updates as performed using FedAvg, the GeoMed
method generates a global model update using the geometric

median (GeoMed) of the local model updates (including
adversarial updates), which may not be among local model
updates [12].

Krum: Differing from GeoMed, the Krum method gener-
ates a global model update using one of the local updates,
which minimizes the sum of distances to its closest neighbors
(including adversarial ones) [8].

No-defense: Within RAFL, the no-defense method is no
rule-based and VAE-based detector, and leverages a federated
meta learning framework with multiple learning loops.

F. Evaluation metrics

Model accuracy: Used for evaluating classification models,
defined as the percentage of correct classifications that a
trained ML model achieves, calculated by dividing the number
of correct predictions by the total prediction number.

Training time: The time taken by a ML model to train on
a dataset and it also includes data processing.

G. Performance Evaluation

Model Accuracy: Fig. 5 shows model accuracy across two
datasets for four different attacks, and for detection methods.
Fig. 5 (a) demonstrates that RAFL achieved a higher accuracy
than other approaches when applied to MNIST dataset. Our
RAFL detector achieved an almost identical model accuracy
to that of No-attack (88.7% vs. 89.6% for sign flipping
attack). This result is due to RAFL detecting and removing
adversarial clients by considering mean and standard deviation
within the ranking matrix, and error reconstruction in VAE
latent space. Other approaches are able to achieve satisfactory
performance for Gaussian noise attack and little is enough
attack for FedAvg (78.8%, 84.6%) and GeoMed (85%, 82.7%),
respectively. However, both FedAvg and GeoMed are less
effective against the sign flipping attack (54.7%, 39.5%) and
zero gradient attack (41.8%, 30.4%). Within sign flipping
attack and zero gradient attack, adversarial clients attempt to
modify the geometric center of all uploaded model updates
from clients, resulting in poor model performance. FedAvg
calculates the average of all client model updates, resulting
in model performance loss. Krum exhibits a lower model
accuracy compared with FedAvg, GeoMed and RAFL. For
example, under Gaussian noise attack, Krum achieves 37.75%,
while FedAvg, GeoMed and RAFL achieve 78.8%, 85%, and
89.6%, respectively. The is due to Krum only selecting the
most appropriate updates, however in a non-IID setting client
model updates are biased, thus decreasing model accuracy.

As shown in Fig. 5, our proposed RAFL exhibits a similar
trend, achieving the best performance in all settings when
applied to Cifar10. Since the Cifar10 dataset and model
architecture of the CNN model are more complex, the model
accuracy is lower than MNIST. For instance, under sign
flipping attacks, RAFL achieved 55.5% on Cifar10 dataset.
FedAvg, GeoMed and Krum all failed when exposed to sign
flipping attacks, little is enough attack, Gaussian noise attack,
and zero gradient attack. The exception is GeoMed exposed to
a Gaussian noise attack with model accuracy (52.75%) close

0 20 40 60 80 100
0

25

50

75

100

A
cc

ur
ac

y
(%

)
Sign flipping attack

No-attack RAFL FedAvg GeoMed Krum No-defense

0 20 40 60 80 100

Gaussian noise attack

0 20 40 60 80 100

Little is enough attack

0 20 40 60 80 100

Zero gradient attack

Communication rounds (MNIST dataset)

0 50 100 150 200
0

20

40

60

A
cc

ur
ac

y
(%

)

Sign flipping attack

0 50 100 150 200

Gaussian noise attack

0 50 100 150 200

Little is enough attack

0 50 100 150 200

Zero gradient attack

Communication rounds (Cifar dataset)

Fig. 5. Comparison of the benchmark defense schemes and RAFL using different datasets.

TABLE I
DIFFERENT NUMBER OF ADVERSARIAL CLIENTS (SIGN FLIPPING ATTACK)

Methods 10% 20% 30% 40%
RAFL 88.45% 88.52% 88.94% 89.52%

GeoMed 87.93% 85.45% 73.27% 47.47%
FedAvg 80.12% 73.26% 69.94% 48.72%
Krum 26.92% 37.5% 29.79% 30.75%

to RAFL’s (53.3%). This result is due that the Gaussian noise
attack adds a uniform noise u ∈ U (−0.5, 1.5). GeoMed can
utilize the geometric median to avoid such noise.

Adversarial Clients Number Effects: Table I shows the
impact of the number of adversarial clients on RAFL and
other benchmark defense schemes. We vary the fraction of
adversarial clients from 10% to 40%, because we assume that
benign clients are the majority of clients. This experiment
trained a LR model on MNIST dataset. As shown in Table
I, the model accuracy of GeoMed and Fedavg reduces with
an increasing number of adversarial clients. For example,
under GeoMed aggregation method, when 10% of clients
are adversarial clients, model accuracy is 87.93%. While
model accuracy is 47.47% when adversarial clients increase
to 40%. It is because these two methods are calculated as
a weighted average and geometric median of the resulting
model from the clients, respectively. More adversarial clients
produce worse results. In contrast to GeoMed and FedAvg,
Krum only uses one of the local updates to generate a global
model resulting in its model accuracy being less relevant to the
number of adversarial clients. Our proposed RAFL is also not
affected by the proportion of adversarial clients. Differing from
robust learning methods that tolerate a limited proportion of
adversarial clients, RFAL is a detection-based method to detect
and remove adversarial clients. The absolute number has little
effect on final model accuracy. As shown in Table I, when

RAFML FedAvg Krum GeoMed
0

100

200

300

400

Tr
ai

ni
ng

 ti
m

e
(m

in
s)

0

1

2

3

4

P
er

 ro
un

d
(m

in
s)

0.58

3.13
3.5 3.28

ML training FL training Per round time

Fig. 6. Training time for 100 communication rounds

10% of clients are adversarial, model accuracy can achieve
88.45% after 100 communication rounds. When 40 clients are
adversarial, a similar result can be achieved, obtaining 89.52%
model accuracy. Thus, Table I demonstrates our method effec-
tively detects adversarial clients without assuming any number
of adversarial clients, as we rank and cluster participating
clients parameters and analyze their latent space.

Training Time: RAFL operates with reduced training time
in comparison to other benchmark defense schemes. The total
training time of RAFL consists of two parts: ML detector
training time and FL training time. As shown in Fig. 6, the
ML detector training time is about 8 mins and the FL training
time is around 58 mins for the whole training process in 100
communication rounds. The average time of per communica-
tion round is 0.58 minutes. In contrast, FedAvg, Krum and
GeoMed do not require ML detector training time. They only
need FL training, but they take a longer time. FedAvg running
100 communication rounds spent 313 minutes, Krum used
350 mins and GeoMed took 328 minutes. Thus, although our
proposed method needs one more step to train an ML model,
it requires less training time, speeding up the training process
and adaptation to new environments.

Rule-based Detector: In our proposed method, we utilized
a rule-based method to generate a clean dataset to online train a

0.094 0.097 0.100 0.103 0.106

0.10

0.15

0.20
ST

D
Gassuian Noise Attack (30%)

0.138 0.140 0.142 0.144 0.146

Gassuian Noise Attack (40%)

0.138 0.140 0.142 0.144 0.146

0.125

0.150

0.175

ST
D

Sign flipping attack (30%)

0.136 0.139 0.142 0.145 0.148

Sign flipping attack (40%)

Mean

Fig. 7. Rule based detector (Red = adversarial clients, Blue = benign clients)

VAE detection model. Fig. 7 shows the scatter plots of (eI , si)
for 50 clients under Gaussian noise attack and sign flipping at-
tack with 30% and 40% adversarial clients on MNIST dataset.
It illustrates the difference between benign and adversarial
clients in terms of the mean and the standard deviation of
gradient ranking. In Fig. 7, for the sign flipping attack with
40% adversarial clients, as the number of adversarial clients
increases, the difficulty of distinguishing benign clients from
adversarial clients increases. The difference between them is
not clear in regards to mean and standard deviation.

Discussion: As shown from our results, targeted defenses
that distinguish adversarial model updates produced by differ-
ent datasets are increasingly necessary. When conducting no-
defense experiments, no-defense mechanisms was applied to
the framework. As shown in Fig. 5, model accuracy of Gaus-
sian noise attack, little is enough attack, and zero gradient at-
tack is higher than Krum, demonstrating that RAFL is robust-
by-design. Even without considering any detection models,
RAFL still provides limited defense against attacks. Based on
our experiments, the proposed method obviously cannot detect
all adversarial clients. For the rule-based detection method,
if adversarial clients create more adaptive attacks, they may
evade our detection model and degrade model performance.
For VAE online detection method, distortion is unavoidable
due to dimension reduction, however does not need a public
dataset, protecting clients privacy and reduce security risks.

VI. CONCLUSION

In this paper, we have proposed a novel FL framework that
is robust against adversaries and combines a rule-based detec-
tion method and an online learning-based detection method to
effectively distinguish adversarial clients from benign clients.
This framework also utilizes multiple learning loops to train
multiple personalized detection models for different group
clients. Numerical results show that our proposed RAFL
outperforms the benchmark defense methods in terms of model
accuracy and efficiency.

ACKNOWLEDGMENTS

Research supported by the UKRI Trustworthy Autonomous
Systems Node in Security/EPSRC Grant EP/V026763/1.

REFERENCES

[1] B. McMahan et al., “Communication-efficient learning of deep networks
from decentralized data,” in International Conference on Artificial
intelligence and statistics (AISTATS). PMLR, 2017, pp. 1273–1282.

[2] D. Kawa et al., “Credit risk assessment from combined bank records
using federated learning,” International Research Journal of Engineering
and Technology, vol. 6, no. 4, pp. 1355–1358, 2019.

[3] J. Xu et al., “Federated learning for healthcare informatics,” Journal of
Healthcare Informatics Research, vol. 5, no. 1, pp. 1–19, 2021.

[4] Z. Yu et al., “Mobility-aware proactive edge caching for connected
vehicles using federated learning,” IEEE Transactions on Intelligent
Transportation Systems, vol. 22, no. 8, pp. 5341–5351, 2020.

[5] E. Bagdasaryan et al., “How to backdoor federated learning,” in Pro-
ceedings of the International Conference on Artificial intelligence and
statistics (AISTATS). PMLR, 2020, pp. 2938–2948.

[6] P. Kairouz et al., “Advances and open problems in federated learning,”
Foundations and Trends® in Machine Learning, 2021.

[7] Z. Wu et al., “Federated variance-reduced stochastic gradient descent
with robustness to byzantine attacks,” IEEE Transactions on Signal
Processing, vol. 68, pp. 4583–4596, 2020.

[8] P. Blanchard et al., “Machine learning with adversaries: Byzantine
tolerant gradient descent,” Advances in Neural Information Processing
Systems, vol. 30, 2017.

[9] Z. Sun et al., “Can you really backdoor federated learning?” arXiv
preprint arXiv:1911.07963, 2019.

[10] C. Xie et al., “Generalized byzantine-tolerant sgd,” arXiv preprint
arXiv:1802.10116, 2018.

[11] D. Yin et al., “Byzantine-robust distributed learning: Towards optimal
statistical rates,” in International Conference on Machine Learning
(ICML). PMLR, 2018, pp. 5650–5659.

[12] Y. Chen et al., “Distributed statistical machine learning in adversarial
settings: Byzantine gradient descent,” ACM on Measurement and Anal-
ysis of Computing Systems, vol. 1, no. 2, pp. 1–25, 2017.

[13] C. Xie et al., “Zeno: Distributed stochastic gradient descent with
suspicion-based fault-tolerance,” in International Conference on Ma-
chine Learning (ICML). PMLR, 2019, pp. 6893–6901.

[14] S. Li et al., “Learning to detect malicious clients for robust federated
learning,” arXiv preprint arXiv:2002.00211, 2020.

[15] Z. Zhang et al., “Fldetector: Defending federated learning against model
poisoning attacks via detecting malicious clients,” in ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, 2022.

[16] Z. Gu and Y. Yang, “Detecting malicious model updates from federated
learning on conditional variational autoencoder,” in International Paral-
lel and Distributed Processing Symposium (IPDPS), 2021, pp. 671–680.

[17] L. Li et al., “Rsa: Byzantine-robust stochastic aggregation methods for
distributed learning from heterogeneous datasets,” in AAAI Conference
on Artificial Intelligence (AAAI), vol. 33, no. 01, 2019, pp. 1544–1551.

[18] S. Shen et al., “Auror: Defending against poisoning attacks in collabora-
tive deep learning systems,” in Annual Conference on Computer Security
Applications (ACSAC), 2016, pp. 508–519.

[19] M. Aledhari et al., “Federated learning: A survey on enabling technolo-
gies, protocols, and applications,” IEEE Access, vol. 8, 2020.

[20] W. Zhu et al., “Mandera: Malicious node detection in federated learning
via ranking,” arXiv preprint arXiv:2110.11736, 2021.

[21] J. Kang et al., “Reliable federated learning for mobile networks,” IEEE
Wireless Communications, vol. 27, no. 2, pp. 72–80, 2020.

[22] W. Chen et al., “Boosting decision-based black-box adversarial attacks
with random sign flip,” in European Conference on Computer Vision
(ECCV). Springer, 2020, pp. 276–293.

[23] G. Baruch et al., “A little is enough: Circumventing defenses for dis-
tributed learning,” Advances in Neural Information Processing Systems,
vol. 32, 2019.

[24] T. Hospedales et al., “Meta-learning in neural networks: A survey,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2021.

[25] C. T Dinh et al., “Personalized federated learning with moreau en-
velopes,” Advances in Neural Information Processing Systems, vol. 33,
pp. 21 394–21 405, 2020.

[26] L. Bottou, “Stochastic gradient descent tricks,” in Neural Networks:
Tricks of the Trade. Springer, 2012, pp. 421–436.

[27] D. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[28] S. Kornblith et al., “Similarity of neural network representations revis-
ited,” in International Conference on Machine Learning (ICML), 2019.

