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Explainable Adversarial Learning Framework on
Physical Layer Secret Keys Combating Malicious

Reconfigurable Intelligent Surface
Zhuangkun Wei, Wenxiu Hu, Weisi Guo

Abstract—The development of reconfigurable intelligent sur-
faces (RIS) is a double-edged sword to physical layer security
(PLS). Whilst a legitimate RIS can yield beneficial impacts
including increased channel randomness to enhance physical
layer secret key generation (PL-SKG), malicious RIS can poison
legitimate channels and crack most of existing PL-SKGs. In this
work, we propose an adversarial learning framework between
legitimate parties (namely Alice and Bob) to address this Man-in-
the-middle malicious RIS (MITM-RIS) eavesdropping. First, the
theoretical mutual information gap between legitimate pairs and
MITM-RIS is deduced. Then, Alice and Bob leverage generative
adversarial networks (GANs) to learn to achieve a common
feature surface that does not have mutual information overlap
with MITM-RIS. Next, we aid signal processing interpretation of
black-box neural networks by using a symbolic explainable AI
(xAI) representation. These symbolic terms of dominant neurons
aid feature engineering-based validation and future design of
PLS common feature space. Simulation results show that our
proposed GAN-based and symbolic-based PL-SKGs can achieve
high key agreement rates between legitimate users, and is even
resistant to MITM-RIS Eve with the knowledge of legitimate
feature generation (NNs or formulas). This therefore paves the
way to secure wireless communications with untrusted reflective
devices in future 6G.

Index Terms—Adversarial Learning, Symbolic representation,
Man-in-the-middle attack, Reconfigurable intelligent surface,
Physical layer secret key.

I. INTRODUCTION

Wireless communication systems are susceptible to various
attack vectors due to their broadcasting nature. Traditional
cryptography leverages the advantages in complexities of
designed mathematical problems [1], which, however, renders
it less attractive in securing wireless communications for future
lightweight and massive Internet-of-Everything (IoE) devices
in 6G. In the last 10 years, the concept and techniques of
physical layer security (PLS) have been proposed and widely
studied to secure the legitimate wireless channels.

A. Literature Review

From research perspectives, PLS are categorized as key-less
PLS and physical layer secret key generation (PL-SKG).
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1) Key-Less PLS: Key-less PLS aims to maintain the supe-
riority of legitimate channels by minimizing information leak-
age to potential eavesdroppers (Eves). The methods include
the optimizations of beamforming vector [2], the anti-jamming
artificial noise [3], the trajectory of autonomous systems [4],
the spin modulation, etc. The challenge lies in the lack of
guarantee of a feasible solution, especially when combined
with real-world constraints from other layers (e.g., control and
mission).

2) PL-SKG: Another category is PL-SKG, whereby legiti-
mate Alice and Bob leverage the reciprocal and random chan-
nel state information (CSI) between them as common features
to generate symmetrical secret keys [5]–[11]. The exploited
reciprocal CSIs in existing works include the received signal
strength (RSS) [6], the channel phases [12], and the channel
frequency response [13]. In these cases, Alice and Bob are
required to send public pilot sequences to each other and
pursue channel estimations to acquire these common CSI,
which will then be passed to the key quantization [14], [15],
key reconciliation [16], and privacy amplification [17] modules
for key generation.

To further improve the secret key rate (SKR), one-way
random signal-based [18]–[20] and two-way random signal-
based [21]–[24] PL-SKG have been proposed. The designs
include the popular two-way cross-multiplication PL-SKG,
where Alice and Bob send random pilot sequences to each
other and crossly multiply their sent and received signals as the
common feature for further standard key generation process.
In this view, the randomness of common features (i.e., the
entropy in terms of bit per sample) not only involves the
random CSI but is enhanced by Alice’s and Bob’s sent random
signal, thereby improving the SKR.

3) When PLS meets RIS: Reconfigurable intelligent surface
(RIS) has been recently proposed and designed to reconfigure
the wireless channels to improve communication quality of
services (QoS) [25]–[28]. In key-less PLS, RIS phase provides
a new degree-of-freedom (DoF) to minimize the information
leakage [29], [30]. For PL-SKG, RIS can be used to increase
channel randomness by randomly assigning the RIS phase
[31]–[34], which enables a fast generation of the physical layer
secret keys. Based on this idea, the work in [31] computes the
theoretical SKR of RIS-secured low-entropy channel, and the
work in [35], [36] further designs an optimal RIS phase set
by maximizing the theoretical SKR.

The advance of RIS also introduces new attacking and
eavesdropping threats. This can be categorized as attackers
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whether to destroy or to maintain the channel reciprocity
between Alice and Bob. The first category aims to ruin the
reciprocal channel-based PL-SKG [37]. The second category
tries to intercept Alice’s and Bob’s messages and reconstruct
their physical layer secret keys. This physical layer man-in-
the-middle (MITM) attack was first proposed by [38] and
validated via hardware experiments in [39]. Then, our previous
work in [40] further proposes two MITM-RIS Eve schemes to
crack the exiting CSI-based and two-way randomness-based
PL-SKGs. What is worse, MITM-RIS is hardly to be detected
or countermeasured by standard authentication methods (e.g.,
hash-based signatures), given the inability of its reflective
elements to actively send pilots for protocol [41], [42] and
authentication purposes.

B. Contributions & Paper Structure

In this work, we aim to propose an explainable adversarial
learning-based physical layer common feature generators for
Alice and Bob, to generate symmetrical secret keys that are
resistant to the MITM-RIS Eve. Indeed, several machine
learning-based PL-SKGs have been designed recently [43],
including deep neural network (NN) [44], [45], long short-
term memory (LSTM) [46], auto-encoder [47], [48], etc.
However, none of them considers the harsh physical layer
MITM eavesdropping, and all of them result in black-box
NNs that lack interpretation and explicit formulas to present
trustworthiness. The detailed contributions are provided in the
following.

(1) We deduce a theoretical mutual information gap between
legitimate Alice-Bob and MITM-RIS Eve. This serves as the
theory of the existence of a common feature space that cannot
be reconstructed via the leaked signals to MITM-RIS.

(2) Based on the deduced mutual information gap, we design
a generative adversarial network (GAN) based framework,
for Alice and Bob to learn to reach the common feature
space. Here, Alice and Bob are assigned two NNs as feature
generators, and an NN of an assumed MITM-RIS Eve is set as
the discriminator. Cross-correlation is used in the generator’s
and discriminator’s loss functions to measure the similarity of
features as well as maintain the randomness.

(3) To explain the trained common feature generator NNs,
we deploy Meijer G function-based symbolic metamodelling
to identify the dominant special terms of dominant neurons.
The results then lead to the finding of one common feature
space, and the designs of explicit formulas-based common fea-
ture generators. As such, we provide a more interpretable and
transparent approach for generating physical layer common
features and the secret keys relied upon.

(4) We evaluate our proposed GAN-based and explicit
formula-based PL-SKG. The results show high key agreement
rates between Alice and Bob, and that even the MITM-RIS
Eve with the full knowledge of Alice’s and Bob’s common
feature generator (NNs or formulas) still cannot reconstruct the
generated physical layer secret keys. This promising outcome
signifies a significant step toward establishing secure wireless
communications in the context of untrusted reflective devices,
laying the groundwork for future 6G cybersecurity.

The rest of this work is structured as follows. In Section II,
we describe channel models and the MITM-RIS Eve threats.
In Section III, we elaborate on our design of GAN-based
common feature generators, and the symbolic metamodelling
process to derive the explicit formula-based common feature
generators. In Section VI, we show our simulation results. We
finally conclude this work in Section V.

In this work, we use bold lower-case letters for vectors. We
use ∥ · ∥2 to denote the 2-norm, and diag(·) to diagonalize
a vector. | · | and (·)∗ represent the absolute value and the
conjugate of a complex value. We denote mod(·, ·) as the
modulus operator and ⌊·⌋ is to truncate the argument. The
matrix transpose is denoted as (·)T . E(·) and D(·) represent the
expectation and variance. CN (·, ·) is to represent the complex
Gaussian distribution with mean and variance.

II. SYSTEM MODEL & PROBLEM FORMULATION

In this work, three nodes, namely Alice, Bob and an
untrusted RIS are considered, where two legitimate users
Alice and Bob are to generate secret keys leveraging channel
reciprocity. Here, we omit the direct channel between Alice
and Bob, but assume the worst-case that only the channels
between Alice to RIS, and Bob to RIS are existed. As such,
the untrusted RIS, equipped with RF chains [49], can pursue
the MITM to reconstruct the legitimate common features and
secret keys of Alice and Bob [40].

A. Channel and Signal Model

The legitimate users, Alice and Bob are considered as
single-antenna. The untrusted RIS is modelled as a uniform
planar array (UPA) of size M = Mx×My (see Fig. 1(a)). The
direct channels from Alice to RIS and Bob to RIS, denoted
as gaR ∈ CM×1 a ∈ {A,B}, are modelled as [50]:

gaR =

L∑
n=1

ρaR,n√
ι

· u (αaR,n, βaR,n)

ρaR,n ∼ CN
(
0, C0 · d−η

aR

) (1)

In Eq. (1), C0 is the path loss at the reference dis-
tance (i.e., 1m). daR is the line-of-sight (LoS) distance
between a to RIS, and η is the exponential non-line-
of-sight (NLoS) loss factor. L is the number of NLoS
Rayleigh paths and ρaR,n is the gain for nth path.
u(α, β) ≜ [exp(ja(α, β)l1), · · · , exp(ja(α, β)lM )]T , with
a(α, β) ≜ 2π

λ [sin(α) cos(β), sin(α) sin(β), cos(α)] and lm ≜
[0,mod(m − 1,Mx)d, ⌊(m − 1)/My⌋d]T . αaR,n, βaR,n ∈
[−π/2, π/2] are the half-space elevation and azimuth angles
of nth path. For the structure of RIS, a square shape element
is used with the size as d× d, where d = λ/8 is set (i.e., less
than half-wavelength λ/2 [50]–[52]).

With the modelling of the direct channels to RIS, the
combined channels from Bob to Alice (Alice to Bob), denoted
as gBA (gAB), are expressed as:

g = gAB = gBA = gT
BR · diag(w) · gAR, (2)

In Eq. (2), w = [exp(jϑ1), · · · , exp(jϑM )]T is the phase
vector of the RIS, where ϑm ∈ [0, 2π) with m ∈ {1, · · · ,M}
is the phase of mth RIS element.
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Fig. 1. Sketch of adversarial learning framework against MITM-RIS Eve: (a) MITM-RIS Eve that cracks the existing PL-SKGs; (b) the GAN-based structure
with Alice’s and Bob’s common feature generator NNs and a discriminator Eve.

B. Man-In-The-Middle RIS Eavesdropping

In our previous work [40], two MITM-RIS Eve schemes are
proposed. This designed RIS Eve creates a reciprocal random
channel via manipulating its RIS phase ϑm ∼ [0, 2π), and
inserts it into Alice and Bob. This therefore enables RIS Eve
to reconstruct the legitimate common features using reciprocal
CSI or two-way cross-multiplication-based PL-SKGs.

To be specific, for both PL-SKGs, Alice and Bob are
required to send signals in time-division duplex (TDD) mode,
where the CSI during the two consecutive time slots are
reciprocal [31]–[34]. In this context, we simplify the notations
by reducing the transmitted/received time series to single time
step scalars in the description of the PL-SKG process, where
the vector version can be found in [40]. We denote Alice’s and
Bob’s sent signals as xA, xB ∈ {

√
Et exp(jϕ)|ϕ ∈ [0, 2π]},

and their received signals as:

yA =gBA · xB + nA

yB =gAB · xA + nB ,
(3)

with nA, nB the received noise.
1) Eavesdropping CSI-based Secret Keys: In CSI-based

PL-SKG, Alice and Bob send pre-defined pilot sequences and
estimate the reciprocal CSI in two consecutive time slots. Their
estimated CSIs are [31]–[34]:

ĥA = yA · x∗
B/Et ≈ gBA,

ĥB = yB · x∗
A/Et ≈ gAB .

(4)

As such, leveraging the reciprocal CSIs as the common
features, i.e., ĥA ≈ ĥB , secret keys can be generated at Alice
and Bob individually, via the standard key quantization [14],
[15], reconciliation [16] and privacy amplification [17].

MITM-RIS Eve aims at recovering the reciprocal CSIs of
gAB , gBA. To create the worst-case scenario, we assume that
all RIS’s elements are equipped with RF chains for receiving
and base-band channel estimation. This extreme setting pro-
vides a more accurate channel estimation and therefore serves
as a more powerful Eve than the design in [40], where a sparse
RF chain placement and compressed sensing method is used.

As such, RIS will receive signals from Alice and Bob at two
consecutive time slots, i.e.,

y
(A)
R = gAR · xA + n

(A)
R ,

y
(B)
R = gBR · xB + n

(B)
R .

(5)

This therefore can be used to estimate the channels of Alice-
RIS and Bob-RIS as:

ĝAR = y
(A)
R · x∗

A/Et ≈ gAR

ĝBR = y
(B)
R · x∗

B/Et ≈ gBR.
(6)

Then, MITM-RIS Eve can reconstruct the legitimate CSI by
taking the estimated results into Eq. (2). The legitimate secret
key using this CSI is therefore cracked by this MITM-RIS.

2) Eavesdropping Two-Way Cross-Multiplication-based Se-
cret Keys: In two-way cross-multiplication PL-SKG, Alice and
Bob send random sequences in two consecutive time slots, and
multiply their sent and received signals as common features,
i.e., [23], [53]

ϕA = xB · yB ≈ g · xB · xA

ϕB = xA · yA ≈ g · xB · xA

(7)

Then, secret keys can be generated at Alice and Bob via their
common features ϕA ≈ ϕB .

MITM-RIS Eve here aims to reconstruct the cross-
multiplication common features. Similar to eavesdropping the
CSI-based case, we consider the worst-case scenarios where
all RIS’s elements are equipped with RF chains. According to
our previous work [40], the legitimate common features can
be reconstructed by directly multiplying the received signals
from Alice and Bob, i.e.,

ϕE =
(
y
(B)
R

)T
· diag(w) · y(A)

R ≈ g · xB · xA. (8)

As such, MITM-RIS Eve can then obtain the legitimate secret
keys generated by two-way cross-multiplication features.

C. Aim of this Work
As CSI-based and two-way cross-multiplication-based PL-

SKGs are compromised by the existing MITM-RIS Eve, the
rest of this work aims to design the adversarial learning-
based PL-SKG where the MITM-RIS cannot reconstruct the
common features and the secret keys relied upon.
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III. ADVERSARIAL LEARNING BASED PL-SKG

In this section, we will elaborate on (i) our design of
GAN-based physical layer common feature generators, and (ii)
Meijer-G function-based symbolic metamodeling for explicit
formula-based common feature generators. In the following
part, the feature construction leverages the aforementioned
two-way signals, where Alice and Bob will send random pilot
sequences in TDD mode, and then leverage their sent and
received signals to generate common features.

The theory underlies the existence of common feature space
that is resistant to MITM-Eve comes from the positive mutual
information difference between Alice’s and Bob’s two-way
signals and MITM-RIS Eve received signals, which reads:

I

([
xA

yA

]
,

[
xB

yB

])

− max

I
[xA

yA

]
,

y(A)
R

y
(B)
R

w


, I

[xB

yB

]
,

y(A)
R

y
(B)
R

w



 > 0.

(9)

Here, we omit all the receiving noises, as we aim to show the
pure mutual information gap between legitimate nodes and
MITM Eve. A detailed explanation is provided in Appendix
A.

A. GAN-based Common Feature Generators

Leveraging the theory showing the existence of the common
feature space that is resistant to MITM Eve, the GAN-based
framework is designed, which includes Alice’s and Bob’s
common feature generators and a discriminator MITM-RIS
Eve that is designed to cover all the spatial positions between
Alice and Bob.

1) Legitimate Feature Generator NNs: As is shown in Fig.
1(b), Alice and Bob deploy two fully connected NNs as the
common feature generators, denoted as ΨθA

(·) and ΨθB
(·)

with θA and θB the parameters. Here, the two NNs have the
same structures. The input layer has 4 neurons, which are the
real and imaginary of one’s sent and received signals (i.e.,
xA, yA for Alice, and xB , yB for Bob). Each NN contains 3
hidden layers with 1024, 512, and 128 neurons respectively.
The activation function is ReLU. Given the complex form of
wireless channels and signals, the output layer is designed as 2
neurons. These neurons correspond to the real and imaginary
components, and the angle they form contributes to the final
constructed features. As such, the feature generator NNs of
Alice and Bob are expressed as:

fA = ΨθA

(
Re{xA}, Im{xA},Re{yA}, Im{yA}

)
fB = ΨθB

(
Re{xB}, Im{xB},Re{yB}, Im{yB}

) (10)

2) Discriminator Eve NN: To prevent MITM-RIS from
reconstructing the legitimate features, Alice and Bob further
assume a discriminator MITM-RIS Eve NN. The inputs are the
simulated RIS’s (real and imaginary parts of) phase and re-
ceived signals from Alice and Bob, i.e., g̃AR ·xA and g̃BR ·xB ,
and the RIS phase w̃. Then, 3 hidden layers with 1024, 512,
and 128 neurons are assigned, with ReLU activation function.

Similar to Alice’s and Bob’s NNs, the output layer contains
2 neurons to represent the real and imaginary components,
which form the angles as the constructed feature. By denoting
the parameters of the discriminator NN as θ̃E , its output is
expressed as:

f̃E = Ψ˜θE

(
Re{g̃ARxA},Im{g̃ARxA},Re{g̃BRxB},

Im{g̃BRxB},Re{w̃}, Im{w̃}
)
(11)

It is noteworthy that this assumed discriminator MITM-RIS
Eve NN is not the real MITM-RIS Eve. The training data for
this discriminator should encompass all the spatial positions
of Alice and Bob to this assumed RIS and cover all the
channel distributions. This approach ensures the incorporation
of potential Man-in-the-Middle (MITM) scenarios in real-
world situations.

3) Data & Loss Function: For the data, Alice, Bob, and
RIS are modelling following the description in Section II-A.
From Eq. (1), the distribution of channels between one le-
gitimate user to RIS is fully determined by the elevation
and azimuth angles and the LoS distance. In this view, to
encompass comprehensive scenarios, we evenly split (i) the
angle half-space [−π/2, π/2] by 100, and (ii) the distance
from 0m to 200m by 1000. Then, a total of N = 106 pairs
of (g̃AR, g̃BR, w̃, xA, xB , yA, yB) is sampled as the training
data from the channel and signal models.

In the training stage, the batch size is assigned as K = 64
and the Adam optimizer is utilized with a learning rate of
10−5. The loss functions of generators and the discriminator
have opposite objectives. The loss function of the discriminator
Eve NN is:

Loss(θ̃E) = −|corr(fA, f̃E)| − |corr(fB , f̃E)|. (12)

The aim is to let discriminator Eve learn the legitimate fea-
tures. This is designed by maximizing the absolute correlation
coefficients between Alice’s (Bob’s) and discriminator Eve’s
features in one batch.

The loss function of Alice and Bob contains (i) the aim to
maximize the absolute correlation coefficient between Alice’s
and Bob’s features among one batch, and (ii) the aim that the
discriminator Eve cannot reconstruct the legitimate features
from their received signals, i.e.,

Loss(θA,θB) =− |corr(fA, fB)|

+ λ ·
[
|corr(fA, f̃E)|+ |corr(fB , f̃E)|

]
.

(13)
where λ = 0.8 is the assigned coefficient.

It is noteworthy that, in these loss functions, we characterize
the commonality of features via correlation coefficients other
than the basic mean squared error (MSE). The reasons are two-
fold. First, MSE only accounts for the difference between two
features, but is unable to characterize the mutual information.
For example, if Alice’s and Bob’s features are with all 1
elements, their MSE will approach 0 but their features lack
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Algorithm 1: Training of Adversarial Feature Con-
struction NNs

Input: number of Training data N , learning rate
r = 10−5, episode number Emax = 104, batch
size B = 64

1 Training data: Sampling a total of N tuples of
(g̃AR, g̃BR, w̃, gAB , xA, xB , yA, yB) according to
Eqs. (1)-(3), where the elevation and azimuth angles
and LoS distances are evenly selected given the split
grids of angle and distance spaces;

2 Initialize Alice’s and Bob’s feature generator NNs and
discriminator Eve NN as ΨθA

(·), ΨθB
(·), Ψ˜θE

(·);
3 for episode = 1, · · · , Emax do
4 Sampling a batch B = 64 of training data ;
5 for each i = 1, · · · , B batch do
6 Compute fA[i] and fB [i] via Eq. (10);
7 Compute f̃E [i] via Eq. (11);
8 Update Discriminator Eve NN by Loss(θ̃E) in

Eq. (12);
9 Update Alice’s and Bob’s feature generator

NNs by Loss(θA,θB) in Eq. (13);
10 end
11 end

Output: Alice’s and Bob’s feature generator NNs
ΨθA

(·) and ΨθB
(·).

randomness and mutual information. In contrast, the correla-
tion coefficient expressed by:

corr(X,Y ) =
E(XY )− E(X) · E(Y )√

D(X) · D(Y )
, (14)

involves not only the similarity (in the numerator) but also the
variances (in the denominator) to consider the randomness,
which thereby serves as the better way to characterize the
(first-order) mutual information. Secondly, achieving the MSE
criterion is possible by directly scaling down the outputs of fA
and fB . However, it’s important to note that whilst the MSE
may decrease, e.g., MSE(0.1 ·fA, 0.1 ·fB) < MSE(fA, fB),
the mutual information remains unchanged, i.e., I(0.1·fA, 0.1·
fB) = I(fA, fB).

4) Algorithm Flow of Training Process: The overall train-
ing process is detailed in Algorithm 1. Given the number
of training data, learning rate, maximum episode number
and batch size, step 1 is to generate the training data for
Alice’s and Bob’s generator NNs and the discriminator Eve
NN. Step 2 is to initialize these 3 NNs. The training starts
from steps 3 to 11, by sampling a batch of training data
in step 4, computing the outputs of NNs in steps 5-6, and
updating the discriminator NN (step 8) and the generator NNs
(step 9) respectively. The outputs are the trained Alice’s and
Bob’s feature generator NNs which can (i) generate common
features from the two-way signals, and (ii) prevent MITM-
RIS Eve from reconstructing the common features via RIS’s
inserted channels (we will further test this in Section IV and
Simulations).

Trained 

Generator

𝑥𝐴

𝑦𝐴

Symbolic 
representation 

Meijer G function

Important neurons to 

symbolic representation

Explicit 
generator 

formula design

(a)

(b)

Use the highest 

frequency term to 

design explicit formula

Fig. 2. Symbolic representation of NN for explicit formula design: (a) using
Meijer G function for symbolic representation of dominant neurons of trained
legitimate generator NNs; (b) shows the appearance frequency of special terms
derived from fitted Meijer G functions, which then are used to design explicit
formula-based common feature generators as Eqs. (19)-(21)

B. Explainability to Explicit Feature Generator Formula

Explaining black-box neural networks is important to under-
stand and validate the work, to interpret findings of key signal
features to researchers and engineers, and to draw lessons, as
outlined in our previous vision for xAI for 6G [54].

After the training of feature generator NNs, Alice and Bob
can generate binary secret keys individually via their generated
common features. However, the opaque black-box NNs may
not be able to present trustworthiness in both academic and
real applications. To address this, we rely on Meijer G function
to represent our trained common feature generator NNs. Then,
based on the representation results, we deduce a concise
and explicit formula of common feature generator, serving as
the white-box to defend the MITM-RIS eavesdropping. The
schematic flow is shown in Fig. 2(a).

1) Symbolic Representation via Meijer G Functions: In
essence, the Meijer G-function is a family of univariate
functions, each of which corresponds to a linear combination
of certain special functions (e.g., exp(x), 1/(1 + x), log2(x),
etc.). The equation of Meijer G function is expressed as [55],
[56]:

Gm,n
p,q

(a1,··· ,ap

b1,··· ,bq |c · x
)

=
1

2πj

∫
L

∏m
i=1 Γ(bi − s)

∏n
i=1 Γ(1− ai + s)∏q

i=m+1 Γ(1− bi + s)
∏p

i=n+1 Γ(ai − s)
(c · x)sds,

(15)
where 0 ≤ m ≤ q, 0 ≤ n ≤ p are predefined integer numbers,
a1 · · · ap and b1, · · · , bq are continuous real parameters with
relations ak − bi /∈ Z+ for k = 1, · · · , n and i = 1, · · · ,m
and x ̸= 0. Here Γ(·) is Gamma function extended on complex
variable s. The integral path L is from −i∞ to i∞ separating
the poles of the factors bi− s from those of factors 1−ak+ s
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[57]. Some of the equivalent form of Meijer G functions are
[56]:

G0,1
3,1

(
2,2,2
1 |c · x

)
≡ c · x

G1,0
0,1 (

−
0 |c · x) ≡ exp(cx)

G2,2
1,2

(
1,1
1,0|c · x

)
≡ log(1 + cx).

(16)

When fitting an NN, the Kolmogorov superposition theorem
[58] states that every multivaruate continuous functions can
be written as a finite two-layer composition of univariate
continuous functions. As such, by stacking the input of
Alice’s feature generator NN as x = [x1, x2, x3, x4] =
[Re{xA}, Im{xA},Re{yA}, Im{yA}], we create our Meijer G
function-based representation framework as:

G(x,θG) =

1∑
l=0

G1,l

(
θ1,l

∣∣∣ 3∑
i=0

G0,i(θ0,i|xi)

)
. (17)

In Eq. (17), the function has 2 layers, where the first layers
are 4 univariate Meijer G functions, i.e., G0,i ≜ G1,2

2,2(θ0,i|xi),
and the second layers are 2 univariate Meijer G functions, i.e.,
G1,l ≜ G1,0

0,1(θ1,l|·) with the inputs as the summation of first
layer outputs. Here, θG = [θ1,0,θ1,1,θ0,0,θ0,1,θ0,2,θ0,3] are
the parameters that use to fit the Alice’s feature generator NN.
As such, the loss function is designed as:

LossG(θG) =
∥∥∥G(x,θG)− f

(m,n)
A (x)

∥∥∥2
2
, (18)

where f
(m,n)
A (x) represents the output of the nth neurons of

mth layer. It is worth noting that there are many potential
fittings in the function space [59].

To implement the Meijer G function-based fitting, we first
select 50 neurons from 2nd and 3rd hidden layers of Alice’s
trained common feature generator NN, whose activated values
are larger than the threshold thr = 1 in the feature generation
process with test data. Then, each selected neurons is fitted
using the representative framework in Eq. (17) and the loss
function in Eq. (18). Fig. 2(b) shows the frequency of appear-
ance of some special forms (e.g., xyn, x log y, etc.). It is seen
that the percentages of the form xyn is obviously higher than
others, which hints its importance in preserving the mutual
information of Alice and Bob and countering the MITM Eve.
Inspired by this, we design an explicit formula of common
feature generators in the next part.

2) Explicit Formula of Common Feature Generator: Given
the result of Fig. 2(b), we simplify and break down the
learned common feature generator NNs to only embrace the
linear combinations of forms xmyn. Here, the term xmyn is
simplified by the logarithm terms as log(1 + xm) + log(1 +
yn) = log((1 + xm)(1 + yn)) ≈ xm + yn + xmyn, where
the approximation holds as the transmitted power of Alice
and Bob are set less than 1W. As such, we define zA by the
following expression:

za = [za, z
n
a , log (1 + zna )]

T
, n ∈ {2, 3, 4},
a ∈ {Alice,Bob}

(19)

where za is traversing the set, each composed by the
inputs of common feature generator NN, i.e., ∀za ∈

{Re{xa}, Im{xa},Re{ya}, Im{ya}}. Then, we solve the least
square problem to obtain the linear coefficients ϱ, i.e.,

ϱ = argmin
∥∥fA − ϱT · zA

∥∥2
2
. (20)

Following the derivation of linear coefficients ϱ, the explicit
formula-based common features can be generated at Alice and
Bob as:

ΥA = ϱT · zA
ΥB = ϱT · zB

(21)

C. NN-based MITM-RIS Eve
In this work, we test our designed PL-SKG in the face

of a strong NN-based MITM-RIS Eve. We consider the
worst scenarios where this MITM-RIS Eve knows the trained
common feature generator NNs, or the explicit form in Eq.
(21). Here, with the knowledge of Alice’s and Bob’s feature
generator NNs, Eve cannot directly reconstruct their generated
common features, as Eve does not know the exact sent and
received signals of Alice and Bob. However, via the MITM-
RIS, Eve can intercept the signals from Alice and Bob, which
thereby poses the threat of recovering the legitimate common
features via a well-trained NN. In this part, we elaborate on
the build-up of such Eve NN, which will then be used in the
simulation part to test the security of our designed PL-SKG.

It is also noteworthy that this MITM-RIS Eve is concep-
tually different from the discriminator Eve in our adversarial
learning framework, as the latter is employed by legitimate
Alice and Bob to ensure their features cannot be estimated by
potential Eves.

The structure of MITM-RIS Eve NN consists of one input
layer, 3 hidden layers, and an output layer. The input is
RIS Eve’s received signals from Alice and Bob, and the RIS
phase vector. To further strengthen this Eve, the numbers of
neurons of 3 hidden layers are assigned as 2048 512 and 128
respectively, where the activation functions are ReLU. The
output layer is designed according to the legitimate feature
generator NNs. Here 2 neurons correspond to the real and
imaginary components, and the angle they form is the final
Eve’s reconstructed features, i.e.,

fE = ΨθE

(
Re{y(A)

R },Im{y(A)
R },Re{y(B)

R },

Im{y(B)
R },Re{w}, Im{w}

) (22)

where θE is the parameters to be learnt.
The training data is generated by the simulations of this

MITM-RIS Eve, where an assumed Alice and Bob are mod-
elled with split angle half-space [−π/2, π/2] by 100 and
distance from 0m to 200m by 1000, according to the model
description in Section II-A. As this MITM-RIS Eve knows
Alice’s and Bob’s trained feature generator NNs, it is able to
generate Alice’s and Bob’s common features fA and fB given
the simulated sent and received signals of Alice and Bob. As
such, to train this Eve NN to generate the same features of
Alice and Bob, the loss function is designed as:

LossE(θE) = −|corr(fE , fA)| − |corr(fE , fB)| (23)

which is minimized by the Adam optimizer with a learning
rate of 10−5. We will show in the Simulation section that
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even the MITM-RIS Eve with exact knowledge of legitimate
feature generator NNs, it is still impossible to reconstruct the
legitimate common features for secret key generation.

IV. SIMULATION RESULTS

In this section, we evaluate our trained and designed legiti-
mate feature generators, in the face of the trained MITM-RIS
Eve NN. The model configuration is provided in the following.
In a 3D space, the MITM-RIS is located at (0, 0, 0) with
unit m, and the positions of Alice and Bob are within the
100m from RIS. The direct channels from Alice and Bob to
MITM-RIS are modelled in Eq. (1) according to [50], where a
square structure of RIS is considered with M = 100 elements.
Here, the referenced path loss is set as C0 = −30dB at the
reference distance (i.e., 1m), and the NLoS path loss exponents
are αN = 3. The number of multi-paths is L = 5 [60] with
random half-space elevation and azimuth angles independently
and randomly distributed over U [−π/2, π/2]. The power of
sent signals from Alice and Bob is set as Et = 0.1W.

A. Performance of designed GAN-based Common Feature
Generators

We first show the training and testing performance of the
designed GAN-based framework. It is shown in Fig. 3 that
with the increase of the training epoch, the loss function of
legitimate feature generator NNs converges very fast (within
2000 epochs). According to Eq. (13), this loss function
contains to (i) maximize the absolute correlation coefficient
between Alice’s and Bob’s features, and (ii) minimize the
absolute correlation coefficient between Alice’s (Bob’s) and
discriminator Eve’s features. These are shown to be achieved
in Fig. 4, where the absolute correlation coefficient between
Alice’s and Bob’s features converges to 1 and that between
Alice’s (Bob’s) and discriminator Eve’s features converges
to 0. It is noteworthy that during the training stage, some
spikes appear in both Fig. 3-4 (e.g., from 2000-4000 epochs).
This is due to the adversarial characteristics to jump out
of the local optima area to better satisfy both positive and
discriminator aims in the generators’ loss function. Such spikes
then gradually disappear as the increase of epoch, which
indicates the finding of the stable optimal area. As such,
by combining the results from Figs. 3-4, we demonstrate
the successful training of the designed adversarial learning
framework.

We next show the training and testing results of the NN-
based MITM-RIS Eve, which is described in Section III-C.
Here, we evaluate the performances of MITM-RIS Eve NN
to learn the common features generated from both trained
legitimate generator NNs and explicit formula-based gener-
ators in Eqs. (19)-(21). In Fig. 5, it is seen that the NN of
MITM-RIS Eve cannot converge to a minimal value when
trying to learn either the legitimate generator NN-based or the
explicit formula-based legitimate common feature generators.
For example, these Eve NNs are trained for 1.5× 106 epochs
but are still stuck at very high loss values (−0.24 and −0.3
compared with the beginning value around −0.2).

Fig. 3. Converge of loss functions under training epochs of GAN-based design
of legitimate common feature generator NNs and discriminator NN.

Fig. 4. Converge (to 1) of absolute correlation coefficients of common features
generated by Alice’s and Bob’s feature generator NNs.

Then, in Fig. 6, we show the results of absolute correlation
coefficients between Eve’s feature and Alice’s features (with
generator NN or explicit formula), i.e., |corr(fA, fE)| and
|corr(ΥA, fE)|. It is seen that even with 1.5 × 106 epochs,
NN-based Eve still cannot learn the legitimate features, as the
absolute correlation coefficients never exceed 0.1. Combined
the results from Figs. 5-6, we demonstrate the capability of the
proposed PL-SKG to defend the deep learning-based MITM-
RIS Eve.

B. Performance of proposed PL-SKG with Noise

In this part, we evaluate our proposed PL-SKG under differ-
ent levels of the receiving noise. Here, for a fair comparison,
the receiving signal-to-noise ratio (SNR) of Alice, Bob, and
MITM-RIS Eve are assigned as same from 5dB to 30dB.
In Fig. 7, the absolute correlation coefficients of features
between (i) Alice-Bob with feature generator NNs, and (ii)
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Fig. 5. Training performance of NN-based MITM RIS Eve

Fig. 6. The absolute correlation coefficients of features generated by MITM-
RIS Eve NN and Alice during the training stage.

Alice-Bob with explicit formula-based feature generator are
provided. These correlation coefficients increase (from 0.2
to 0.95) with the growth of the receiving SNR (from 5dB
to 30dB), as higher SNRs provide less noisy two-way sig-
nals for legitimate common feature generation. Then, it is
seen that NN-based feature generators yield less correlated
Alice-Bob features in the low SNR area (e.g., SNR<15dB),
while exhibiting higher correlations in the high SNR region
(e.g, SNR>20dB), as opposed to the explicit formula-based
method. This indicates that NN-based feature generators can
learn the latent and nonlinear dependency from Alice’s and
Bob’s two-way signals, but are sensitive to noisy inputs,
given the cascaded compounded coupling of nonlinear effects
in a deep NN structure. In contrast, the feature generator
leveraging the explicit formula, as presented in Eqs. (19)-
(21), while conceding a slight decrease in performance in high
SNR regions, provides a more interpretable and transparent
approach for generating physical layer common features and

Fig. 7. The absolute correlation coefficients of features between Alice-Bob,
and Alice-Eve, under different levels of receiving SNR.

Fig. 8. Key agreement rate after key quantization from Alice’s and Bob’s
common features.

secret keys relied upon. This attribute is of significance in
the establishment of a reliable and trustworthy framework for
securing wireless communications.

We finally provide the secret key agreement rates under
different levels of receiving SNR. Note that in this paper, the
aim is to provide physical layer common feature generation
against MITM-RIS Eve. These common features further re-
quire the standard key quantization, reconciliation, and privacy
amplification to generate secret keys, which are not within the
scope and are provided in Appendix B. In Fig. 8, the key agree-
ment rates between Alice and Bob and between Alice and Eve
are provided, which corresponds to the correlation coefficient
results in Fig. 7. As such, combining the illustrations in Fig.
7-8, our proposed PL-SKG shows a promising capability in
countermeasuring the untrusted RIS, which therefore renders
a cybersecurity approach in securing wireless communications
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for future 6G.

V. CONCLUSION

In future 6G, the integrated sensing and communication
scenarios require the amounts of RISs and passive sensors.
These devices raises new security issues, which (i) are hard
to be authenticated due to their inabilities to actively send
authenticated messages, and (ii) pose the threat to pursue Man-
in-the-middle physical layer eavesdropping. Existing physical
layer secret key generations, either directly using reciprocal
CSI, or leveraging the cross-multiplication of two-way signals
(one’s sent and received), have been shown to be easily
countermeasures by such MITM-RIS Eve [40].

This work proposed the adversarial learning framework to
address the security issue raised by this MITM-RIS Eve. The
proposed approach leveraged GAN to generate common fea-
tures through the two-way signals involving reciprocal CSIs.
By designing the adversarial loss function to embrace both the
correlations between Alice’s and Bob’s generator outputs, as
well as correlations between Alice’s outputs and a discrim-
inator Eve NN, Alice and Bob are able to learn common
feature generators to prevent MITM-RIS from reconstructing
common features. Furthermore, the use of Meijer G function-
based symbolic representation facilitated the design of ex-
plicit formula-based legitimate common feature generators.
Simulation results demonstrate the efficacy of the proposed
GAN-based and symbolic-based PL-SKGs, showcasing a high
key agreement rate between legitimate users. Notably, these
solutions exhibit resilience against MITM-RIS Eve, even when
possessing knowledge of legitimate feature generation NNs.
This promising outcome signifies a significant step toward
establishing secure wireless communications in the context of
untrusted reflective devices, laying the groundwork for future
6G networks.

APPENDIX A
DEDUCTION OF NOISE-RELEASED VERSION OF EQ. (9)

To simplify the notation, we denote the reciprocal channel
between Alice and Bob as g = gAB = gBA. Here, we omit all
receiving noises in Eq. (9), and have yA = gxB , yB = gxA,
y
(A)
R = gARxA, and y

(B)
R = gBRxB . In the following, we

show the proof of the first part of Eq. (9), i.e.,

I

([
xA

yA

]
,

[
xB

yB

])
− I

[xA

yA

]
,

gARxA

gBRxB

w

 > 0, (24)

which is equivalent by replacing xA, yA by xB , yB .
The first mutual information term of Eq. (24) can be ex-

pressed in terms of the entropy h(x) = −
∫
p(x) log2 p(x)dx,

i.e.,

I

([
xA

yA

]
,

[
xB

yB

])
= h

([
xA

yA

])
+h

([
xB

yB

])
−h



xA

yA
xB

yB




(25)

In Eq. (25), given the independent pairs of (xA, yA = g · xB)
and (xB , yB = g · xA), we have

h

([
xA

yA

])
= h

([
xA

g · xB

])
= h(xA) + h(g · xB) (26)

h

([
xB

yB

])
= h

([
xB

g · xB

])
= h(xB) + h(g · xA) (27)

Also, note that the joint probability density function (PDF) of
xA, yA, xB , yB can be re-written as the joint PDF of g, xA, xB ,

p(xA, yA, xB , yB) = p(xA, gxB , xB , gxA)

=p(gxB , gxA|xA, xB) · p(xA, xB)

=p(g) · p(xA, xB)

=p(g, xA, xB)

(28)

where the last equation is because the independence between
g, xA, xB . This helps to simplify the last term in Eq. (25) as:

h



xA

yA
xB

yB


 = h

xA

xB

g

 = h(xA) + h(xB) + h(g) (29)

As such, by taking Eqs. (26)-(29) back into Eq. (25), the
mutual information of Alice’s and Bob’s sent and received
pairs is:

I

([
xA

yA

]
,

[
xB

yB

])
= h(g · xA) + h(g · xB)− h(g). (30)

The second mutual information term of Eq. (24) is expressed
by entropy as:

I

[xA

yA

]
,

gARxA

gBRxB

w

=h

([
xA

yA

])
+h

gARxA

gBRxB

w

−h



xA

yA
gARxA

gBRxB

w


 .

(31)
In Eq. (31), the first term of the right-hand side is provided in
Eq. (26). The second term of the right-hand side can be sim-
plified given the independence between gARxA,gBRxA,w,
i.e.,

h

gARxA

gBRxB

w

 = h(gARxA) + h(gBRxB) + h(w). (32)

The last term of the right-hand-side is expressed as:

h




xA

yA
gARxA

gBRxB

w


 = h




xA

gAR

gBRxB

w




=h(xA) + h(gAR) + h(gBRxB) + h(w),

(33)
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which is because:

p(xA, yA,gARxA,gBRxB ,w)

=p(gxB ,gAR,gBRxB ,w|xA) · p(xA)

=p(gxB ,gBRxB ,w|gAR, xA) · p(xA,gAR)

=p(gxB ,w|gBRxB ,gAR, xA) · p(xA,gAR,gBRxB)

=p(gxB |w,gBRxB ,gAR, xA) · p(xA,gAR,gBRxB ,w)

=p
(
gT
AR · diag(w) · gBR · xB |w,gBRxB ,gAR, xA

)
· p(xA,gAR,gBRxB ,w)

=p(xA,gAR,gBRxB ,w)
(34)

Then, by taking Eq. (26) and Eqs. (32)-(33) back to Eq. (31),
the mutual information between MITM RIS Eve’s received
signals and Alice’s sent and received pair are:

I

[xA

yA

]
,

gARxA

gBRxB

w

 = h(g · xB) + h(gARxA)− h(gAR)

(35)
We take Eq. (30) and Eq. (35) back to Eq. (24), the mutual

information difference is derived as:

I

([
xA

yA

]
,

[
xB

yB

])
− I

[xA

yA

]
,

gARxA

gBRxB

w


=h(g · xA) + h(gAR)− h(g)− h(gAR · xA).

(36)

Recalling that g = gT
BR · diag(w) · gAR is a summation of

random variables, which, according to [40], can be expressed
by complex Gaussian distribution, i.e., g ∼ CN (0, 2σ2), where
[40]

σ2 = 0.5 ·M · C2
0 · d−αL

AR · d−αL

BR . (37)

gAR is the direct channel from Alice to RIS, which follows
the complex Gaussian distribution as gAR ∼ CN (0, 2ΣAR)
[50]. xA is the sent signal with form xA =

√
Et exp(jϕ), ϕ ∼

[0, 2π). As such, we have g · xA ∼ CN (0, 2Etσ
2) and gAR ·

xA ∼ CN (0, 2EtΣAR). The entropy terms in the right-hand
side of Eq. (36) are:

h(g) = 0.5 log2
(
2πe · σ2

)
, (38)

h(g · xA) = 0.5 log2
(
2πe · Et · σ2

)
, (39)

h(gAR) = 0.5 log2
(
(2πe)M · det (ΣAR)

)
, (40)

h(gARxA) = 0.5 log2
(
(2πe)M · EM

t · det (ΣAR)
)
. (41)

By taking Eqs. (38)-(41) into Eq. (36), we have

I

([
xA

yA

]
,

[
xB

yB

])
− I

[xA

yA

]
,

gARxA

gBRxB

w


=0.5(1−M) log2 Et,

(42)

which is positive when the transmitting power Et < 1.

upper-
threshold

lower-
threshold

Fig. 9. Secret key quantization from common features by upper and lower
thresholds

APPENDIX B
SECRET KEY GENERATION AFTER COMMON FEATURE

GENERATION

After the generation of common features at Alice and Bob,
they will individually quantize their features into binary keys,
which is illustrated in Fig. 9. Here, two threshold quantization
method is used. In each key generation round, the key will
be quantized as 1 or 0 if the current feature is larger than a
predefined upper-threshold or lower than a predefined lower-
threshold, or will be discarded if the feature is within the
region between two thresholds.

After the key quantization process, key reconciliation will
be pursued. In this process, one legitimate user (say Alice)
will generate check-bits by channel coding scheme (e.g., polar
codes). Then, Alice will send check-bits to Bob, who will use
these to reconcile the mismatched bits by decoding processes.

Finally, privacy amplification will be employed, with the
aim of enlarging the secret key length to meet the secrecy
capacity requirement.
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