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Introduction Our Work Results 

➢ Adversarial attack deceives 
machine learning models by 
providing them with 
intentionally manipulated 
inputs designed to cause the 
model to make a mistake or 
incorrect prediction 

In this work, we focus on adversarial 
attacks including PGD, FGSM, 
DeepFool, BIM, C&W, JSMA, and 
SSAH. 

Clean 

Attacked 

Loss 
Data Prototypes 

➢ Manual labelling: human-imperceptible adversarial attacks are challenging 
to label manually. This process can be time-consuming and may introduce 
errors, particularly when the annotator lacks familiarity with the task. 

➢ Mismatch between domains: the trained adversarial attack detection models 
may need to be deployed in previously unseen conditions, including novel 
attack algorithms and datasets. 

➢ Multiple instances: each prototype in prototype-based detection methods 
may consists of multiple instance samples, which leads to a neglect of the 
intrinsic semantic relationships between prototypes of individual objects. 

➢ Pixel Mapping (PM): uses a pair of transformations in some set of 
transformations (e.g. geometric transformations, etc.) to input data, to 
produce the augmentation for describing the data into the feature space. 
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➢ Prototype-wise Contrastive Estimation (PCE): maximizes the log-likelihood 
function of the observed samples for prototype clustering. 

➢ Discrimination bank: distinguishes individual instances for each prototype 
from the embedding space. 

We propose a parallel axial-attention (PAA)-based encoder to split the 2-D 
attention map into two 1-D sub-attention maps, one for height and one for 
width. It can be simultaneously trained on two GPU devices. 
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where 𝜆1 = 1, 𝜆2 = 1 

In the middle plot, the feature embeddings within a single prototype are not 
separable. However, when the discrimination bank is added in the right plot, 
individual instances become separated. 

Conclusions 

ImageNet-R dataset detection results 

Baselines 

Baselines 

PAA-ResNet family 

➢ The proposed self-supervised learning approach improves adversarial attack 
detection accuracy. 

➢ PAA offers faster inference, making them feasible for potential real-world 
applications. 
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